36 research outputs found

    Single-Cell Analysis of Murine Long-Term Hematopoietic Stem Cells Reveals Distinct Patterns of Gene Expression during Fetal Migration

    Get PDF
    <div><h3>Background</h3><p>Long-term hematopoietic stem cells (LT-HSCs) migrate from the fetal liver (FL) to the fetal bone marrow (FBM) during development. Various adhesion and chemotactic receptor genes have been implicated in the migration of adult LT-HSCs. However, their role in the migration of fetal LT-HSCs is not clearly understood due, in part, to the rare number of these cells in fetal tissues, which preclude classical gene expression analysis. The aim of this study is to characterize the expression of migration related genes in fetal LT-HSC across different anatomical locations during development.</p> <h3>Methodology/Principal Findings</h3><p>We isolated fetal LT-HSC from different developmental stages, as well as different anatomical locations, and performed single-cell multiplex RT-qPCR and flow cytometry analysis of eight molecules involved in adult LT-HSC migration. Our results show that the gene expression of the chemokine receptor <em>Cxcr4</em> in LT-HSC varies across developmental microenvironments and times, while the cadherin <em>Cdh2</em> (<em>Ncad</em>) and the calcium receptor <em>Casr</em> show higher gene expression and variability only in FBM at 17.5 days post coitum (dpc). The cadherin <em>Cdh5</em> (<em>Vecad</em>) maintains high expression variability only during fetal development, while the integrin subunit <em>Itga5 (α5)</em> increases its variability after 14.5 dpc. The integrin subunits <em>Itga4</em> (<em>α4</em>) and <em>Itgal</em> (<em>Lfa1</em>), as well as the selectin ligand <em>Selplg (Psgl1)</em>, did not show differences in their expression in single LT-HSCs irrespective of the developmental times or anatomical microenvironments studied.</p> <h3>Conclusions/Significance</h3><p>Our data demonstrate that the expression pattern of phenotypically identical, single LT-HSCs fluctuates as a function of developmental stage and anatomical microenvironment. This is the first exhaustive gene expression comparison of migration-related molecules in fetal tissues across developmental times, enhancing the understanding of LT-HSC migration fate decisions during development.</p> </div

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    Purpose: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. Methods: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015. Patients were stratified into three age groups:<65 years, 65 to 80 years, and = 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. Results: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 = 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients =80 years who underwent surgery were significantly lower compared with other age groups (14.3%, 65 years; 20.5%, 65-79 years; 31.3%, =80 years). In-hospital mortality was lower in the <65-year group (20.3%, <65 years;30.1%, 65-79 years;34.7%, =80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%, =80 years; p = 0.003).Independent predictors of mortality were age = 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI = 3 (HR:1.62; 95% CI:1.39–1.88), and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared, the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. Conclusion: There were no differences in the clinical presentation of IE between the groups. Age = 80 years, high comorbidity (measured by CCI), and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    XLVIII Coloquio Argentino de Estadística. VI Jornada de Educación Estadística Martha Aliaga Modalidad virtual

    Get PDF
    Esta publicación es una compilación de las actividades realizadas en el marco del XLVIII Coloquio Argentino de Estadística y la VI Jornada de Educación Estadística Martha Aliaga organizada por la Sociedad Argentina de Estadística y la Facultad de Ciencias Económicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos últimos se dispone de un hipervínculo que direcciona a la presentación del trabajo. Ellos obedecen a distintas temáticas de la estadística con una sesión especial destinada a la aplicación de modelos y análisis de datos sobre COVID-19.Fil: Saino, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Aguirre, Alberto Frank Lázaro. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Ruiz, Sebastián León. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: Alegría Jiménez, Alfredo. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de Ingeniería en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Álvarez-Vaz, Ramón. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Lezcano, Mikaela. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Urruticoechea, Alar. Universidad Católica del Uruguay. Facultad de Ciencias de la Salud. Departamento de Neurocognición; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Canal Martínez, Margarita. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Rojo, María Paula. Universidad Nacional de Córdoba; Argentina.Fil: Nicolas, María Claudia. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Barbaroy, Tomás. Universidad Nacional de Córdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de Matemática de Bahía Blanca (INMABB); Argentina.Fil: Pisani, María Virginia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Elorza, María Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, María Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Saenz, José Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Pérez de Vida, Fernando. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad Anónima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la República. Facultad de Agronomía; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Pappaterra, María Lucía. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Ascua, Melina Belén. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Roldán, Dana Agustina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: González, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de Estadística; Argentina.Fil: Demaio, Alejo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Hernández, Paz. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fernícola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Dundray, , Fabián. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Farfán Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, Noemí M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Bossolasco, María Luisa. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Leal, Danilo. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Nicolis, Orietta. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Bonadies, María Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Agrimensura. Grupo de Aplicaciones Matemáticas y Estadísticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Gómez, Pablo Sebastián. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Real, Ariel Hernán. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: López Calcagno, Yanil. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: García Bazán, Gaspar. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: Bermúdez Rubio, Dagoberto. Universidad Santo Tomás. Facultad de Estadística; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones Matemáticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: García, María del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Méndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE); Argentina.Fil: García Mata, Luis Ángel. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Ramírez González, Marco Antonio. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas; España.Fil: Scavino, Marco. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Estragó, Virginia. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, Matías. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, Andrés. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP. Departamento de Bioestadística; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, José Eduardo. Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. Instituto de Biociencias. Departamento de Bioestadística; Brasil.Fil: Spataro, Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Nahas, Estefanía. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Márquez, Viviana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Economía y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Caro, Valentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Economía; Argentina.Fil: Blacona, María Teresa. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: García, Gregorio. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Funkner, Sofía. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, María Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, María Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Castro González, Enrique L. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Roldán, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: González, Gisela Paula. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de Economía; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Marfia, Martín. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Matemática de La Plata; Argentina.Fil: Closas, Humberto. Universidad Tecnológica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad Tecnológica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad Tecnológica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto José Andrés. Investigador Independiente; Argentina.Fil: González, Mariana Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemáticas; Argentina.Fil: Lescano, Maira Celeste.

    An Upper-Division, Remote Microbiology Laboratory That Blends Virtual and Hands-on Components to Promote Student Success during the COVID-19 Pandemic.

    No full text
    The COVID-19 shutdown forced many institutions of higher education to shift in-person teaching to emergency remote teaching. This was particularly challenging for laboratory courses, where students are expected to learn hands-on skills needed for their career goals. Here, we describe the transformation of an upper-division microbiology laboratory to a course that seamlessly integrates online simulations with safe, hands-on experiences that can be done from home. This blended lab course helped students attain learning outcomes similar to those achieved in the in-person class. We illustrate the implementation of Unknown Portfolios to help students gain the data analysis and critical thinking skills needed to identify an unknown microorganism. Our data show that students who took these online courses mastered material as well as students who took the lab in person, demonstrating proficiency in laboratory safety skills, hands-on techniques, and theoretical class content. Last, we explore online adaptations to enhance in-person lab classes, aiming at reducing the accessibility and equity gaps inherited in many courses, as well as discussing challenges that instructors might experience in this process
    corecore