325 research outputs found

    Large-scale retrospective relative spectro-photometric self-calibration in space

    Get PDF
    We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.Comment: 23 pages, 19 figures, Accepted for publication in MNRAS, 201

    Structure formation in Multiple Dark Matter cosmologies with long-range scalar interactions

    Full text link
    (Abridged) An interaction between Cold Dark Matter (CDM) and a classical scalar field playing the role of the cosmic dark energy (DE) might provide long-range dark interactions without conflicting with solar system bounds. Although presently available observations allow to constrain such interactions to a few percent of the gravitational strength, some recent studies have shown that if CDM is composed by two different particle species having opposite couplings to the DE field, such tight constraints can be considerably relaxed, allowing for long-range scalar forces of order gravity without significantly affecting observations both at the background and at the linear perturbations level. In the present work, we extend the investigation of such Multiple Dark Matter scenarios to the nonlinear regime of structure formation, by presenting the first N-body simulations ever performed for these cosmologies. Our results highlight some characteristic footprints of long-range scalar forces that arise only in the nonlinear regime for specific models that would be otherwise practically indistinguishable from the standard LCDM scenario both in the background and in the growth of linear density perturbations. Among these effects, the formation of "mirror" cosmic structures in the two CDM species, the suppression of the nonlinear matter power spectrum at k > 1 h/Mpc, and the fragmentation of collapsed halos, represent peculiar features that might provide a direct way to constrain this class of cosmological models.Comment: 11 pages, 4 figures. Submitted to MNRA

    Clustering and redshift-space distortions in interacting dark energy cosmologies

    Full text link
    We investigate the spatial properties of the large scale structure (LSS) of the Universe in the framework of coupled dark energy (cDE) cosmologies. Using the public halo catalogues from the CoDECS simulations -- the largest set of N-body experiments to date for such cosmological scenarios -- we estimate the clustering and bias functions of cold dark matter (CDM) haloes, both in real- and redshift-space. Moreover, we investigate the effects of the dark energy (DE) coupling on the geometric and dynamic redshift-space distortions, quantifying the difference with respect to the concordance LambdaCDM model. At z~0, the spatial properties of CDM haloes in cDE models appear very similar to the LambdaCDM case, even if the cDE models are normalized at last scattering in order to be consistent with the latest Cosmic Microwave Background (CMB) data. At higher redshifts, we find that the DE coupling produces a significant scale-dependent suppression of the halo clustering and bias function. This effect, that strongly depends on the coupling strength, is not degenerate with sigma8 at scales r<5-10 Mpc/h. Moreover, we find that the coupled DE strongly affects both the linear distortion parameter, beta, and the pairwise peculiar velocity dispersion, sigma12. Although the models considered in this work are found to be all in agreement with presently available observational data, the next generation of galaxy surveys will be able to put strong constraints on the level of coupling between DE and CDM exploiting the shape of redshift-space clustering anisotropies.Comment: 11 pages, 7 figures. Minor changes, references added. MNRAS publishe

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    Exponential stability in the perturbed central force problem

    Get PDF
    We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but the Keplerian and the Harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhoroshev's theorem. We deduce stability of the actions over exponentially long times when the system is subject to arbitrary analytic perturbation. The case where the central system is put in interaction with a slow system is also studied and stability over exponentially long time is proved.Comment: 29 pages, 1 figur

    The STAGES view of red spirals and dusty red galaxies: Mass-dependent quenching of star-formation in cluster infall

    Get PDF
    We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ~0.17 using restframe near-UV-optical SEDs, 24 micron IR data and HST morphologies from the STAGES dataset. The cluster sample is based on COMBO-17 redshifts with an rms precision of sigma_cz~2000 km/sec. We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only 4x lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of log M*/Msol=[10,11] where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific SFR of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At log M*/Msol<10, such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note, that edge-on spirals play a minor role; despite being dust-reddened they form only a small fraction of spirals independent of environment.Comment: Accepted for publication in MNRA

    The Impact of Growth Hormone Therapy on Sleep-Related Health Outcomes in Children with Prader–Willi Syndrome: A Review and Clinical Analysis

    Get PDF
    This literature review of growth hormone (GH) therapy and sleep-related health outcomes in children diagnosed with Prader–Willi syndrome (PWS) assembles evidence for the consequences of sleep deprivation and poor sleep quality: difficulty concentrating and learning at school, behavioral problems, diminished quality of life, and growth impairment. Sleep-disordered breathing (SDB) is another factor that impacts a child’s well-being. We searched the electronic databases Medline PubMed Advanced Search Builder, Scopus, and Web of Science using MeSH terms and text words to retrieve articles on GH deficiency, recombinant human growth hormone (rhGH) therapy, sleep quality, SDB, and PWS in children. The censor date was April 2023. The initial search yielded 351 articles, 23 of which were analyzed for this review. The study findings suggest that while GH may have a role in regulating sleep, the relationship between GH treatment and sleep in patients with PWS is complex and influenced by GH dosage, patient age, and type and severity of respiratory disorders, among other factors. GH therapy can improve lung function, linear growth, and body composition in children with PWS; however, it can also trigger or worsen obstructive sleep apnea or hypoventilation in some. Long-term GH therapy may contribute to adenotonsillar hypertrophy and exacerbate sleep apnea in children with PWS. Finally, GH therapy can improve sleep quality in some patients but it can also cause or worsen SDB in others, leading to diminished sleep quality and overall quality of life. The current evidence suggests that the initial risk of worsening SDB may improve with long-term therapy. In conclusion, rhGH is the standard for managing patients with PWS. Nonetheless, its impact on respiratory function during sleep needs to be thoroughly evaluated. Polysomnography is advisable to assess the need for adenotonsillectomy before initiating rhGH therapy. Close monitoring of sleep disorders in patients with PWS receiving GH therapy is essential to ensure effective and safe treatment
    corecore