19 research outputs found

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Topology of spin polarization of the 5d states on W(110) and Al/W(110) surfaces

    Get PDF
    The spin polarization of W(110) and Al/W(110) surfaces is studied by spin- and angle-resolved photoemission. On both surfaces distinct E(k) dispersions are identified with an unusual topology: A single spectral branch is spin polarized antisymmetrically relative to the Γ̄ point, and two spin-polarized branches cross at Γ̄. The crossing branches disperse linearly but this similarity to a Dirac cone is lost after deposition of the Al, where they acquire a parabolic dispersion. Based on ab initio one-step photoemission theory, we show that the measured spin polarization is a property of the ground state and identify the effect as the counterpart of the recently discovered Rashba polarization of bulk states at the surface, but with a distinct non-Rashba topology. © 2012 American Physical Society.This work was partially supported by a grant from St. Petersburg State University for scientific investigations, RFBR project (11-02-00642-a), and DFG-RFBR projects (11-02-91337, 11-02-91344, and RA 1041/3-1). A.G.R. and A.M.S. acknowledge support from the Russian-German laboratory at BESSY II. Partial support is acknowledged from the University of the Basque Country (Grant No. GIC07IT36607) and the Spanish Ministerio de Ciencia e Innovación (Grant No. FIS2010-19609-C02-00).Peer Reviewe

    (Table 1) Phytomass and soil carbon storage of different land cover classes in the Usa river basin

    No full text
    This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed

    Phytomass and soil carbon storage of different land cover classes in the Usa river basin

    No full text
    This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed

    Mineral Nutrition of Naturally Growing Scots Pine and Norway Spruce under Limited Water Supply

    No full text
    The deterioration of plant mineral nutrition during drought is a significant factor in the negative influence of drought on plant performance. We aimed to study the effects of seasonal and multiyear water shortages on nutrient supply and demand in Scots pine and Norway spruce. We studied pine and spruce trees naturally grown in the Bryansk region (Russia). The dynamics of several nutrients (K, Ca, Mg, P, Fe, Mn, Zn, and Ca) in wood, needles, and bark of current-year twigs and the dynamics of the available pools of these elements at different soil depths were analysed. To assess the physiological consequences of changes in element concentrations, lipid peroxidation products and photosynthetic pigments were measured in the needles. Water shortage increased the wood concentrations of all elements except for Mn. In pine, this increase was mainly due to seasonal water deficit, whereas in spruce, multiyear differences in water supply were more important. This increased availability of nutrients was not observed in soil-based analyses. In needles, quite similar patterns of changes were found between species, with Mg increasing almost twofold and Fe and Mn decreasing under water shortage, whereas the remainder of the elements did not change much under differing water supplies. Neither the concentrations of photosynthetic pigments nor the contents of lipid peroxidation products correlated with element dynamics in needles. In summary, water shortage increased the availability of all elements except Mn for the plant; however, needle element contents were regulated independently of element availability for plants

    Climate change damages to Alaska public infrastructure and the economics of proactive adaptation

    No full text
    Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled 5.5billion(2015dollars,35.5 billion (2015 dollars, 3% discount) for RCP8.5 and 4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by 1.3billionthiscentury.Thedistributionofdamagesvariedacrossthestate,withthelargestdamagesprojectedfortheinteriorandsouthcentralAlaska.Thelargestsourceofdamageswasroadfloodingcausedbyincreasedprecipitationfollowedbydamagestobuildingsassociatedwithnearsurfacepermafrostthaw.Smallerdamageswereobservedforairports,railroads,andpipelines.Proactiveadaptationreducedtotalprojectedcumulativeexpendituresto1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to 2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.United States. Environmental Protection Agency. Climate Change Division (Contract EP-D-14-031

    Surface functionalization of few-layer graphene on β -SiC(001) by Neutral Red dye

    No full text
    Few-layer graphene on -SiC(001) functionalized with phenazine dye Neutral Red by means of diazonium chemistry has been studied using X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure, photoemission electron microscopy, scanning tunneling microscopy, and density functional theory calculations. The experimental data reveal the formation of a composite phenazine dye/graphene structure with a large energy gap. The molecules in this structure can be oriented both parallel and perpendicular to the graphene surface. According to scanning tunneling spectroscopy and theoretical calculations, the density of electron states in different surface areas depends on the local short-range order and the molecules’ environment. On the other hand, the photoemission spectroscopy study shows that the bottom layers of the few-layer graphene remain intact, which inherently makes the synthesized layered composite a low-dimensional metal/semiconductor heterostructure. In addition, photoemission electron microscopy imaging shows a high homogeneity of the dye-modified graphene on a micrometer scale

    Negligible Surface Reactivity of Topological Insulators Bi<sub>2</sub>Se<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> towards Oxygen and Water

    No full text
    The long-term stability of functional properties of topological insulator materials is crucial for the operation of future topological insulator based devices. Water and oxygen have been reported to be the main sources of surface deterioration by chemical reactions. In the present work, we investigate the behavior of the topological surface states on Bi<sub>2</sub>X<sub>3</sub> (X = Se, Te) by valence-band and core level photoemission in a wide range of water and oxygen pressures both <i>in situ</i> (from 10<sup>–8</sup> to 0.1 mbar) and <i>ex situ</i> (at 1 bar). We find that no chemical reactions occur in pure oxygen and in pure water. Water itself does not chemically react with both Bi<sub>2</sub>Se<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> surfaces and only leads to slight <i>p</i>-doping. In dry air, the oxidation of the Bi<sub>2</sub>Te<sub>3</sub> surface occurs on the time scale of months, in the case of Bi<sub>2</sub>Se<sub>3</sub> surface of cleaved crystal, not even on the time scale of years. The presence of water, however, promotes the oxidation in air, and we suggest the underlying reactions supported by density functional calculations. All in all, the surface reactivity is found to be negligible, which allows expanding the acceptable ranges of conditions for preparation, handling and operation of future Bi<sub>2</sub>X<sub>3</sub>-based devices
    corecore