71 research outputs found

    North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs

    Get PDF
    This study evaluates the fidelity of North American monsoon and associated intraseasonal variability in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs). Twenty years of monthly precipitation data from each of the 22 models' twentieth-century climate simulations, together with the available daily precipitation data from 12 of them, are analyzed and compared with Global Precipitation Climatology Project (GPCP) monthly and daily precipitation. The authors focus on the seasonal cycle and horizontal pattern of monsoon precipitation in conjunction with the two dominant convectively coupled equatorial wave modes: the eastward-propagating Madden-Julian oscillation (MJO) and the westward-propagating easterly waves. The results show that the IPCC AR4 CGCMs have significant problems and display a wide range of skill in simulating the North American monsoon and associated intraseasonal variability. Most of the models reproduce the monsoon rainbelt, extending from southeast to northwest, and its gradual northward shift in early summer, but overestimate the precipitation over the core monsoon region throughout the seasonal cycle and fail to reproduce the monsoon retreat in the fall. Additionally, most models simulate good westward propagation of the easterly waves, but relatively poor eastward propagation of the MJO and overly weak variances for both the easterly waves and the MJO. There is a tendency for models without undiluted updrafts in their deep convection scheme to produce better MJO propagation.open221

    Validation of a Multivariate Serum Profile for Epithelial Ovarian Cancer Using a Prospective Multi-Site Collection

    Get PDF
    In previous studies we described the use of a retrospective collection of ovarian cancer and benign disease samples, in combination with a large set of multiplexed immunoassays and a multivariate pattern recognition algorithm, to develop an 11-biomarker classification profile that is predictive for the presence of epithelial ovarian cancer. In this study, customized, Luminex-based multiplexed immunoassay kits were GMP-manufactured and the classification profile was refined from 11 to 8 biomarkers (CA-125, epidermal growth factor receptor, CA 19-9, C-reactive protein, tenascin C, apolipoprotein AI, apolipoprotein CIII, and myoglobin). The customized kits and the 8-biomarker profile were then validated in a double-blinded manner using prospective samples collected from women scheduled for surgery, with a gynecologic oncologist, for suspicion of having ovarian cancer. The performance observed in model development held in validation, demonstrating 81.1% sensitivity (95% CI 72.6 – 87.9%) for invasive epithelial ovarian cancer and 85.4% specificity (95% CI 81.1 – 88.9%) for benign ovarian conditions. The specificity for normal healthy women was 95.6% (95% CI 83.6 – 99.2%). These results have encouraged us to undertake a second validation study arm, currently in progress, to examine the performance of the 8-biomarker profile on the population of women not under the surgical care of a gynecologic oncologist

    The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP

    Get PDF
    This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealised experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven orbital seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate

    North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs

    Get PDF
    This study evaluates the fidelity of North American monsoon and associated intraseasonal variability in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs). Twenty years of monthly precipitation data from each of the 22 models' twentieth-century climate simulations, together with the available daily precipitation data from 12 of them, are analyzed and compared with Global Precipitation Climatology Project (GPCP) monthly and daily precipitation. The authors focus on the seasonal cycle and horizontal pattern of monsoon precipitation in conjunction with the two dominant convectively coupled equatorial wave modes: the eastward-propagating Madden-Julian oscillation (MJO) and the westward-propagating easterly waves. The results show that the IPCC AR4 CGCMs have significant problems and display a wide range of skill in simulating the North American monsoon and associated intraseasonal variability. Most of the models reproduce the monsoon rainbelt, extending from southeast to northwest, and its gradual northward shift in early summer, but overestimate the precipitation over the core monsoon region throughout the seasonal cycle and fail to reproduce the monsoon retreat in the fall. Additionally, most models simulate good westward propagation of the easterly waves, but relatively poor eastward propagation of the MJO and overly weak variances for both the easterly waves and the MJO. There is a tendency for models without undiluted updrafts in their deep convection scheme to produce better MJO propagation.open221

    Comprehensive Serum Profiling for the Discovery of Epithelial Ovarian Cancer Biomarkers

    Get PDF
    FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC = 0.933) and CA-125 (AUC = 0.907) were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800). To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912). Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the detection of ovarian cancer

    Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs

    Get PDF
    This study evaluates the subseasonal variability associated with the Asian summer monsoon in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model's twentieth-century climate simulation are analyzed. The authors focus on the three major components of Asian summer monsoon: the Indian summer monsoon (ISM), the western North Pacific summer monsoon (WNPSM), and the East Asian summer monsoon (EASM), together with the two dominant subseasonal modes: the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSIO) and the westward-propagating 12-24-day mode. The results show that current state-of-the-art GCMs still have difficulties and display a wide range of skill in simulating the subseasonal variability associated with Asian summer monsoon. During boreal summer (May-October), most of the models produce reasonable seasonal-mean precipitation over the ISM region, but excessive precipitation over the WNPSM region and insufficient precipitation over the EASM region. In other words, models concentrate their rain too close to the equator in the western Pacific. Most of the models simulate overly weak total subseasonal (2-128 day) variance, as well as too little variance for BSIO and the 12-24-day mode. Only 4-5 models produce spectral peaks in the BSIO and 12-24-day frequency bands; instead, most of the models display too red a spectrum, that is, an overly strong persistence of precipitation. For the seven models with three-dimensional data available, five reproduce the preconditioning of moisture in BSIO but often with a too late starting time, and only three simulate the phase lead of low-level convergence. Interestingly, although models often have difficulty in simulating the eastward propagation of BSIO, they tend to simulate well the northward propagation of BSIO, together with the westward propagation of the 12-24-day mode. The northward propagation in these models is thus not simply a NW-SE-tilted tail protruding off of an eastward-moving deep-tropical intraseasonal oscillation.open444
    corecore