126 research outputs found

    Modelling Individual Evacuation Decisions during Natural Disasters: A Case Study of Volcanic Crisis in Merapi, Indonesia

    Get PDF
    As the size of human populations increases, so does the severity of the impacts of natural disasters. This is partly because more people are now occupying areas which are susceptible to hazardous natural events, hence, evacuation is needed when such events occur. Evacuation can be the most important action to minimise the impact of any disaster, but in many cases there are always people who are reluctant to leave. This paper describes an agent-based model (ABM) of evacuation decisions, focusing on the emergence of reluctant people in times of crisis and using Merapi, Indonesia as a case study. The individual evacuation decision model is influenced by several factors formulated from a literature review and survey. We categorised the factors influencing evacuation decisions into two opposing forces, namely, the driving factors to leave (evacuate) versus those to stay, to formulate the model. The evacuation decision (to stay/leave) of an agent is based on an evaluation of the strength of these driving factors using threshold-based rules. This ABM was utilised with a synthetic population from census microdata, in which everyone is characterised by the decision rule. Three scenarios with varying parameters are examined to calibrate the model. Validations were conducted using a retrodictive approach by performing spatial and temporal comparisons between the outputs of simulation and the real data. We present the results of the simulations and discuss the outcomes to conclude with the most plausible scenario

    Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery

    Get PDF
    Rain-triggered lahars are a significant secondary hydrological and geomorphic hazard at volcanoes where unconsolidated pyroclastic material produced by explosive eruptions is exposed to intense rainfall, often occurring for years to decades after the initial eruptive activity. Previous studies have shown that secondary lahar initiation is a function of rainfall parameters, source material characteristics and time since eruptive activity. In this study, probabilistic rain-triggered lahar forecasting models are developed using the lahar occurrence and rainfall record of the Belham River valley at the Soufrière Hills volcano (SHV), Montserrat, collected between April 2010 and April 2012. In addition to the use of peak rainfall intensity (PRI) as a base forecasting parameter, considerations for the effects of rainfall seasonality and catchment evolution upon the initiation of rain-triggered lahars and the predictability of lahar generation are also incorporated into these models. Lahar probability increases with peak 1 h rainfall intensity throughout the 2-year dataset and is higher under given rainfall conditions in year 1 than year 2. The probability of lahars is also enhanced during the wet season, when large-scale synoptic weather systems (including tropical cyclones) are more common and antecedent rainfall and thus levels of deposit saturation are typically increased. The incorporation of antecedent conditions and catchment evolution into logistic-regression-based rain-triggered lahar probability estimation models is shown to enhance model performance and displays the potential for successful real-time prediction of lahars, even in areas featuring strongly seasonal climates and temporal catchment recovery

    Giant rafted pumice blocks from the most recent eruption of Taupo volcano, New Zealand: Insights from palaeomagnetic and textural data

    Get PDF
    Giant blocks of pumice lie strewn along a former shoreline of intracaldera Lake Taupo, New Zealand, and are the sole subaerial evidence of the most recent volcanism at the Taupo supervolcano. Geochemically they are identical to material erupted during the complex and multiphase 1.8 ka Taupo eruption, which they post-date by one to two decades. The blocks, some of which are >10 m long, show complex jointing patterns indicative of both surface chilling and continued interior expansion, as well as heterogeneous vesicularity, with dense rims (mean density 917 kg/m3) grading via an intervening transition zone (mean density 844 kg/m3) into a more highly vesicular interior (mean density 815 kg/m3). Analysis of thermal demagnetisation data indicates significant reorientation of the blocks as they cooled through a series of blocking temperatures. Some parts of block rims cooled to below 580 °C well before emplacement on the shore, whereas other parts in the interior and transition zones, which cooled more slowly, acquired different orientations before stranding. Some block interiors cooled after blocks were finally deposited, and record the direction of the 1.8 ka field. The blocks are believed to be derived from one or both of a pair of rhyolitic lava domes that developed on the bed of Lake Taupo several decades after the climactic Taupo eruption over the inferred vent area.These, and similar giant rafted pumice blocks in other marine and lacustrine settings raise a number of questions about how volatile-rich felsic magma can be erupted underwater with only limited thermal fragmentation. Furthermore, the prolonged flotation of out-sized fragments of vesiculated magma formed during subaqueous dome-growth contrasts with the rapid sinking of smaller pieces of hot plinian pumice under laboratory conditions. The genesis of pumice forming the blocks is not entirely clear. Most simply the blocks may represent part of a vesiculated carapace of a growing lava dome, broken loose as the dome grew and deformed then rising buoyantly to the surface. Parts of the carapace could also be released by local magma-water explosions. Some textures of the pumice, however, suggest fresher magma released from beneath the carapace. This may suggest that silicic dikes and pillows/pods intruded into a growing mound of silicic hyaloclastite, itself formed by quench fragmentation and thermal granulation of the dike margins. This fragmental cover would have inhibited cooling of a still-hot and actively vesiculating interior, which was then released to float to the surface by gravitational destabilisation and collapse of the growing pile. Following their formation, the large fragments of pumice floated to the lake's surface, where they were blown ashore to become embedded in accumulating transgressive shoreface sediments and continue cooling

    Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    Get PDF
    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations

    Organisational Response to the 2007 Ruapehu Crater Lake Dam-Break Lahar in New Zealand: Use of Communication in Creating an Effective Response

    Get PDF
    When Mt. Ruapehu erupted in 1995–1996 in New Zealand, a tephra barrier was created alongside Crater Lake on the top of Mt. Ruapehu. This barrier acted as a dam, with Crater Lake rising behind it over time. In 2007 the lake breached the dam and a lahar occurred down the Whangaehu Valley and across the volcano’s broad alluvial ring-plain. Given the lahar history from Ruapehu, the risk from the 2007 event was identified beforehand and steps taken to reduce the risks to life and infrastructure. An early warning system was set up to notify when the dam had broken and the lahar had occurred. In combination with the warning system, physical works to mitigate the risk were put in place. A planning group was also formed and emergency management plans were put in place to respond to the risk. To assess the effectiveness of planning for and responding to the lahar, semi-structured interviews were undertaken with personnel from key organisations both before and after the lahar event. This chapter discusses the findings from the interviews in the context of communication, and highlights how good communication contributed to an effective emergency management response. As the potential for a lahar was identifiable, approximately 10 years of lead-up time was available to install warning system hardware, implement physical mitigation measures, create emergency management plans, and practice exercises for the lahar. The planning and exercising developed effective internal communications, engendered relationships, and moved individuals towards a shared mental model of how a respond to the event. Consequently, the response played out largely as planned with only minor communication issues occurring on the day of the lahar. The minor communication issues were due to strong personal connections leading to at least one incidence where the plan was bypassed. Communication levels during the lahar event itself were also different from that experienced in exercises, and in some instances communication was seen to increase almost three-fold. This increase in level of communication, led to some difficulty in getting through to the main Incident Control Point. A final thought regarding public communication prior to the event was that more effort could have been given to developing and integrating public information about the lahar, to allow for ease of understanding about the event and integration of information across agencies.</p

    Learning from the UK’s research impact assessment exercise: a case study of a retrospective impact assessment exercise and questions for the future

    Get PDF
    National governments spend significant amounts of money supporting public research. However, in an era where the international economic climate has led to budget cuts, policymakers increasingly are looking to justify the returns from public investments, including in science and innovation. The so-called ‘impact agenda’ which has emerged in many countries around the world is part of this response; an attempt to understand and articulate for the public what benefits arise from the research that is funded. The United Kingdom is the most progressed in implementing this agenda and in 2014 the national research assessment exercise, the Research Excellence Framework, for the first time included the assessment of research impact as a component. For the first time within a dual funding system, funding would be awarded not only on the basis of the academic quality of research, but also on the wider impacts of that research. In this paper we outline the context and approach taken by the UK government, along with some of the core challenges that exist in implementing such an exercise. We then synthesise, together for the first time, the results of the only two national evaluations of the exercise and offer reflections for future exercises both in the UK and internationally

    Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline

    Get PDF
    Abstract Background Chromatin loops form a basic unit of interphase nuclear organization, with chromatin loop anchor points providing contacts between regulatory regions and promoters. However, the mutational landscape at these anchor points remains under-studied. Here, we describe the unusual patterns of somatic mutations and germline variation associated with loop anchor points and explore the underlying features influencing these patterns. Results Analyses of whole genome sequencing datasets reveal that anchor points are strongly depleted for single nucleotide variants (SNVs) in tumours. Despite low SNV rates in their genomic neighbourhood, anchor points emerge as sites of evolutionary innovation, showing enrichment for structural variant (SV) breakpoints and a peak of SNVs at focal CTCF sites within the anchor points. Both CTCF-bound and non-CTCF anchor points harbour an excess of SV breakpoints in multiple tumour types and are prone to double-strand breaks in cell lines. Common fragile sites, which are hotspots for genome instability, also show elevated numbers of intersecting loop anchor points. Recurrently disrupted anchor points are enriched for genes with functions in cell cycle transitions and regions associated with predisposition to cancer. We also discover a novel class of CTCF-bound anchor points which overlap meiotic recombination hotspots and are enriched for the core PRDM9 binding motif, suggesting that the anchor points have been foci for diversity generated during recent human evolution. Conclusions We suggest that the unusual chromatin environment at loop anchor points underlies the elevated rates of variation observed, marking them as sites of regulatory importance but also genomic fragility

    Tephrochronology

    Get PDF
    Tephrochronology is the use of primary, characterized tephras or cryptotephras as chronostratigraphic marker beds to connect and synchronize geological, paleoenvironmental, or archaeological sequences or events, or soils/paleosols, and, uniquely, to transfer relative or numerical ages or dates to them using stratigraphic and age information together with mineralogical and geochemical compositional data, especially from individual glass-shard analyses, obtained for the tephra/cryptotephra deposits. To function as an age-equivalent correlation and chronostratigraphic dating tool, tephrochronology may be undertaken in three steps: (i) mapping and describing tephras and determining their stratigraphic relationships, (ii) characterizing tephras or cryptotephras in the laboratory, and (iii) dating them using a wide range of geochronological methods. Tephrochronology is also an important tool in volcanology, informing studies on volcanic petrology, volcano eruption histories and hazards, and volcano-climate forcing. Although limitations and challenges remain, multidisciplinary applications of tephrochronology continue to grow markedly

    Factors influencing user acceptance of public sector big open data

    Get PDF
    In recent years Government departments and public/private organizations are becoming increasingly transparent with their data to establish the whole new paradigm of big open data. Increasing research interest arises from the claimed usability of big open data in improving public sector reforms, facilitating innovation, improving supplier and distribution networks and creating resilient supply chains that help improve the efficiency of public services. Despite the advantages of big open data for supply chain and operations management, there is severe shortage of empirical analyses in this field, especially with regards to its acceptance. To address this gap, in this paper we use an extended Technology Acceptance Model (TAM) to empirically examine the factors affecting users’ behavioural intentions towards public sector big open data. We outline the importance of our model for operations and supply chain managers, the limitations of the study, and future research directions
    corecore