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Chromatin loop anchors are associated
with genome instability in cancer and
recombination hotspots in the germline
Vera B. Kaiser* and Colin A. Semple

Abstract

Background: Chromatin loops form a basic unit of interphase nuclear organization, with chromatin loop anchor
points providing contacts between regulatory regions and promoters. However, the mutational landscape at these
anchor points remains under-studied. Here, we describe the unusual patterns of somatic mutations and germline
variation associated with loop anchor points and explore the underlying features influencing these patterns.

Results: Analyses of whole genome sequencing datasets reveal that anchor points are strongly depleted for single
nucleotide variants (SNVs) in tumours. Despite low SNV rates in their genomic neighbourhood, anchor points
emerge as sites of evolutionary innovation, showing enrichment for structural variant (SV) breakpoints and a peak of
SNVs at focal CTCF sites within the anchor points. Both CTCF-bound and non-CTCF anchor points harbour an
excess of SV breakpoints in multiple tumour types and are prone to double-strand breaks in cell lines. Common
fragile sites, which are hotspots for genome instability, also show elevated numbers of intersecting loop anchor
points. Recurrently disrupted anchor points are enriched for genes with functions in cell cycle transitions and
regions associated with predisposition to cancer. We also discover a novel class of CTCF-bound anchor points
which overlap meiotic recombination hotspots and are enriched for the core PRDM9 binding motif, suggesting that
the anchor points have been foci for diversity generated during recent human evolution.

Conclusions: We suggest that the unusual chromatin environment at loop anchor points underlies the elevated
rates of variation observed, marking them as sites of regulatory importance but also genomic fragility.

Keywords: Cancer, Recombination, DNA breakage, Hi-C, Chromatin loops

Background
Recent evidence shows that many cancers and develop-
mental disorders involve disruptions of chromatin or-
ganisation. Insertions and deletions are reported to alter
the boundaries of topologically associating domains
(TADs), which normally constrain the regulatory inter-
actions of resident promoters and enhancers, causing
dysregulated gene expression [1, 2]. Disruptions of particu-
lar TAD boundaries have been reported in neuroblastoma
[3, 4], medulloblastoma [5], leukaemia [6, 7] and other
cancers [8], consistent with the hypothesis that structural
variants (SVs) remodelling TAD boundaries may act as

oncogenic ‘driver’ mutations under selection in tumour
cells [9].
CTCF plays important roles in chromatin organisation,

both demarcating domain boundaries as an insulator
element [10, 11] and by bringing DNA sites that are dis-
tant in linear genomic distance intro close spatial prox-
imity [12]. According to the loop extrusion model, it is
proposed that pairs of CTCF binding sites may physic-
ally interact to form anchoring sites at the base of a
chromatin loop, acting as physical barriers to the
ring-shaped cohesin complex, which slides along the
DNA [13–15]. Topological stress relief at loop anchor
points may be provided by TOP2B [16, 17], an enzyme
that transiently creates double-strand breaks (DSBs) and
re-joins the DNA in a different spatial configuration,
and TOP2B binding sites in the breast cancer cell line
MCF-7 have been shown to be co-located with CTCF
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motifs [18]. On a larger scale, complex arrays of DNA
loops are thought to make up the substructure of regula-
tory domains such as TADs [19], and recent experiments
highlight the critical importance of CTCF for loop and
TAD formation [20].
CTCF binding sites are highly mutated across cancer

types, especially when they are located within loop an-
chor points (LAPs) [21, 22]. Hyper-methylation of the
GC-rich CTCF binding motif has been shown to reduce
CTCF binding in glioma, leading to the up-regulation of
known oncogenes [23]. Hnisz et al. [7] have shown that
constitutive CTCF–CTCF binding site interactions de-
lineating loops are recurrently deleted in T-cell acute
lymphoblastic leukaemia, which leads to oncogene acti-
vation. Overall, these data suggest that domain boundary
or LAP lesions affecting gene regulation are far from
rare in cancers and occur at comparable rates to recur-
rent in-frame gene fusions [8]. However, it is unclear
whether LAPs are intrinsically prone to high mutation
rates in cancer, constituting a novel class of fragile sites
in the genome, or whether the observed lesions affecting
LAPs confer a selective advantage to tumour cells.
Somatic mutation rates vary across the genome, and a

large fraction of this variation can be attributed to differ-
ences in replication timing, with late replicating regions
of the genome accumulating increased levels of single
nucleotide variants (SNVs) [24]. Large regions of chro-
mosomes (encompassing hundreds of kilobases) are rep-
licated synchronously in replication domains that
correspond closely to TADs, linking chromatin organisa-
tion to spatiotemporal variation in replication [25], while
other, inter-correlated features of chromatin, such as his-
tone methylation or acetylation patterns, are also associ-
ated with somatic mutation rates [26]. On a much finer
scale, the individual binding sites of a variety of DNA
binding factors, including CTCF, appear to obstruct the
lagging strand replication and DNA repair machinery
and induce higher mutation rates in human and yeast
[27–29]. However, the mutational landscape associated
with intermediate levels of chromatin organisation, such
as chromatin loops, are not well studied.
Similarly, the influence of genomic features on struc-

tural rearrangements in cancer is relatively under-studied,
but it appears that different cancer types follow different
patterns. For some cancer types, such as breast cancer,
structural somatic variants are enriched within early repli-
cating, GC-rich, transcribed regions of the genome,
whereas the opposite trend was observed for cancers such
as prostate and melanoma [30]. Further, the 3D structure
of the genome may predispose regions of the genome that
are in Hi-C contact to be more likely to undergo struc-
tural rearrangements [31, 32].
A cellular process intrinsically linked to double-strand

breakage is genetic recombination, which is involved in

DNA repair in the somatic cell and is an essential process
in the production of germ cells. Replication- and
recombination-associated mechanisms are hypothesised to
lead to the formation of structural variants and may, there-
fore, contribute to structural variation in cancers [33].
During meiosis, recombination is initiated by DSBs

and occurs non-randomly across the genome; it is at its
highest level at recombination hotspots (HSs) where the
majority (60%) of recombination events take place [34,
35]. While it is known that recombination produces
large SVs, the effect of recombination on the emergence
of SNVs is less clear—as is its relation to chromatin
structure. There is evidence that recombination is muta-
genic in yeast [36, 37], and a recent study of 283 human
trios has shown a correlation between the rate of recom-
bination events in parental germ cell genomes and the
rate of de novo SNVs in offspring genomes, suggesting a
mutagenic effect of recombination [38]. However, the
data supporting this were necessarily sparse, given the
low de novo mutation rates in the germline.
Here, we explore the genomic landscape around LAPs

and demonstrate that the unusual chromatin environ-
ment at LAPs is matched by unexpected mutation rates,
establishing LAPs as foci of evolutionary change and fra-
gile sites in cancer.

Results
Previous work has demonstrated elevated SNV rates at
CTCF binding sites within LAPs in a variety of cancers
[21]. This motivated us to investigate genome-wide somatic
mutation rates around CTCF-containing LAPs from the ag-
gregated Hi-C datasets of Rao et al. [19] (see “Methods”),
using 13 recently released ICGC somatic variant datasets
ascertaining both SNVs and SVs in nine different tumour
types [39]. Within 50 kb of LAPs, the ICGC pan-cancer
samples show a dramatic drop in SNV rates (Fig. 1a). This
regional decrease in SNVs at LAPs is in stark contrast to
the high mutation rate observed at the short 19-bp
CTCF-binding motifs located inside LAPs, which is 12.3
SNVs/Mb− 1, or more than three times higher than the local
background mutation rate. Plotting SNV rates at 20-bp
resolution, a peak of SNVs in the centre of the LAPs at
CTCF-binding sites becomes apparent (as seen in Kaiser
et al. [21]; Fig. 1b and Additional file 1: Figure S1), as well
as a periodic pattern of mutation reflecting nucleosome oc-
cupancy [28, 40]. Thus, CTCF-binding sites within LAPs
are prone to local somatic hypermutation in tumours but
often reside within broader genomic regions with signifi-
cantly reduced SNV rates.

Chromatin loop anchors are HSs of structural variation in
tumours
In contrast to SNVs, the frequency of pan-cancer SV break-
points shows a significant increase at LAPs, inverting the
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pattern seen for SNVs over the same range of flanking se-
quence (Fig. 1c). This shows that LAPs are structurally fra-
gile sites in cancer, and so we examined associations
between LAPs and more direct measures of genomic in-
stability. Lensing et al. [41] identified genome-wide foci of
endogenous DSBs in vitro and these sites show a striking ~
3.7-fold enrichment at LAPs compared to their flanking re-
gions (Fig. 2a). A proportion of this enrichment may be at-
tributable to the close proximity of LAPs to promoters and
enhancers, which are known to suffer elevated DSB rates
[41]. However, LAPs lacking any overlap with known pro-
moters and enhancers show similarly elevated rates to
those that do (Fig. 3). Consistent with inherent genomic
instability, LAPs are also enriched in predicted
G-quadruplexes (G4s), a DNA secondary structure as-
sociated with regulatory regions and DSB formation in
cancers [42] (Fig. 2b).
BRCA1 and BRCA2 are two well-characterised tumour

suppressor genes involved in DSB repair by homologous
recombination [43–45]. BRCA1 is often recruited to sites
of active transcription, which are prone to DNA damage
during the formation of transcriptional R-loops [46]. We
found a strong enrichment of BRCA1 at HMEC LAPs in
MCF10A, a normal breast epithelial cell line, as well as in-
creased RAD51 binding—which mediates BRCA2 bind-
ing—around LAPs in the MCF-7 cell line (Fig. 2c); this is,
to our knowledge, the first observation of BRCA1/2 asso-
ciation with LAPs, albeit this appears to be driven by
neighbouring active promoters and enhancers rather than
the LAPs themselves (Additional file 1: Table S1).

LAPs overlap recombination HSs in human populations
Intriguingly, LAPs show an unexpected genome-wide cor-
respondence with germline recombination HSs, calculated

from genotyping of extant human populations [47], such
that 16% of LAPs overlap HSs (based upon 100,000 circular
permutations; p < 10− 5; Fig. 4a). These overlaps are notably
precise, so that the association between LAPs and HSs
drops when the two sets of regions are shifted with respect
to each other by less than 50 kb (Fig. 4b). Thus, their cor-
respondence is not simply attributable to the enrichment of
both sets of features within certain broader neighbour-
hoods, such as replication timing domains or nuclear com-
partments. Recombination HSs are known to often contain
the motif bound by PRDM9, a critical component of the re-
combination machinery [48, 49], and, using stringent search
criteria (see “Methods”), we find this motif in 17% of HSs.
Similarly, we find that 13% of LAPs also contain at least
one PRDM9 core motif, which is an enrichment of ~ 33%
compared to the median number of motifs per 5-kb bin in
LAP flanking regions (Fig. 4c) and also constitutes a signifi-
cant enrichment genome-wide (circular permutations in R:
p < 10− 5). For the 16% of LAPs directly overlapping HSs
(HS-LAPs) we find no further enrichment of the PRDM9
motif (13.6% of HS-LAPs contain the motif), but, as ex-
pected, there is a notable increase in the recombination rate
at HS-LAPs (Fig. 4d). This is consistent with dual roles for
a subset of LAPs, both as units of chromatin organisation
and as HSs of structural variation.
The recombination enzyme PRDM9 is expressed ex-

clusively in testis, but it is also expressed in a variety of
cancer cell lines and samples and has been proposed as
a cancer biomarker [50]. We observe modestly increased
SNV rates at recombination HSs in cancer (Fig. 5a) but
do not find any pan-cancer increase in SV breakpoints
around HSs (Additional file 1: Figure S2), which might
be expected if meiotic recombination complexes were
activated in the tumours examined here. In addition, the

−0.4 −0.2 0.0 0.2 0.4

3.
4

3.
6

3.
8

4.
0

4.
2

Distance to LAP (MB)

S
N

V
s 

pe
r 

M
B

−1000 −500 0 500 1000

0
2

4
6

8
10

12
14

S
N

V
s 

pe
r 

M
B

0.
0

1.
5

N
uc

le
os

om
e 

O
cc

up
an

cy
 S

co
re

Distance to LAP (Bp)

−0.4 −0.2 0.0 0.2 0.4

0.
07

5
0.

08
0

0.
08

5
0.

09
0

0.
09

5

Distance to LAP (MB)

B
re

ak
po

in
ts

 p
er

 M
B

a b c
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histone modification H3K4me3, which is deposited by
PRDM9 at DSBs, is not observed at recombination HSs
in the cancer cell lines HepG2 and MCF-7 (Additional
file 1: Figure S3). In contrast, H3K4me3 increases
around LAPs (Additional file 1: Figure S3), possibly as a

result of PRDM9 recruitment to the PRDM9 motifs
enriched at LAPs or, more likely, because H3K4me3 is a
mark of active promoters enriched at chromatin bound-
aries [11]. We cannot, however, exclude the possibility
that PRDM9 is active in at least a subset of the tumours
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under investigation and contributes to the increase in
SV rates at LAPs.
A substantial fraction of LAPs (47% of those studied here)

constitute regulatory domain boundaries [19], while an even
higher proportion, 69%, overlap DSB-foci [41], and 16%
overlap recombination HSs (Table 1). Genome-wide, how-
ever, these three categories of LAPs appear to be largely in-
dependent, as the extent of overlap between categories was
remarkably similar to the expected rate assuming independ-
ent distributions across the genome. For example, LAPs that
appear as domain boundaries were as likely to overlap re-
combination HSs as LAPs that do not act as boundaries
(Table 1). There was also no enrichment of Gene Ontology
(GO) terms associated with genes neighbouring HS-LAPs
versus a background set of genes found at all LAPs, i.e.
HS-LAPs are not found near specific functional categories of
genes.
LAPs are associated with similar mutational landscapes

in tumours, irrespective of whether they overlap HSs or
locate outside high recombination regions: both types of
LAP show a distinctive dip in tumour SNV rates (Fig. 5a),
while cancer mutation rates somewhat increase around re-
combination HSs, by ~ 3.5% compared to the median rate
within the flanking regions. As expected, recombination
HSs are associated with a pronounced increase in SNPs in
the 1000 Genomes Project (1KG) dataset [47], and LAPs
that overlap HSs are also enriched for segregating variants,
by ~ 7% compared to the flanking regions (Fig. 5b). Ac-
cordingly, population genetic processes that increase vari-
ation at HSs—such as selective sweeps and reductions in
background selection [51]—also appear to have impacted
germline variation at HS-LAPs. However, germline de

novo SNV rates at LAPs are not reduced as they are in
cancer and, similarly, we do not observe an increase in
SVs near HSs in cancer (Additional file 1: Figure S2), sug-
gesting fundamentally different influences on germline
mutation rates versus cancer-associated somatic mutation
rates at these sites.

Cancer mutation rates at CTCF sites outside LAPs and at
non-CTCF LAPs
To investigate if the observed mutational patterns at
LAPs are due to the presence of CTCF binding alone,
we also studied mutational patterns around constitutive
CTCF-binding sites located outside the known set of
LAPs, i.e. sites that may not act as anchor points. Com-
pared to the CTCF-LAPs, we observe a similar decrease
of SNV rates in the 1-Mb sequence surrounding CTCF
sites (Fig. 6) and a less distinct peak of mutation when
zooming in to high resolution (Additional file 1: Figure
S4). However, we note that an unknown proportion of
these CTCF sites may also be involved in loop formation
but were not detected in present LAP data—either be-
cause they participate in transient or cell type-specific
LAPs or because the sequencing depth was insufficient
in the original cell lines. Indeed, the available data sug-
gest that LAP detection is a linear function of Hi-C
sequencing depth and many loops remain to be discov-
ered (Additional file 1: Figure S5). Non-LAP CTCF sites
also showed an increased rate of DNA breakage (Fig. 6b)
and a strong enrichment of BRCA1 (Additional file 1:
Figure S4), consistent with general co-binding of these
factors and recent data which suggest that CTCF has
roles in regulating the homologous recombination repair

Table 1 Overlap of LAPs with domain boundaries, recombination HSs and DSB-prone regions

a) Feature Feature count Genomic span (Mb)

LAPs 14,737 73.69

Boundaries 40,615 250.89

HSs 32,984 181.79

DSB-prone regions 84,946 34.69

b) Intersection Number of LAPs Fraction of LAPs Expected fraction (circular permutations) p value

LAPs ∩ Boundaries 6960 0.47 0.15 < 10−4

LAPs ∩ HSs 2385 0.16 0.12 < 10−4

LAPs ∩ DSB-prone regions 10,133 0.69 0.14 < 10−4

c) Intersection Number of LAPs Fraction of LAPs Expected fraction (feature intersection) p value

LAPs ∩ HSs ∩ DSB-prone regions 1709 0.12 0.11 < 0.001

LAPs ∩ HSs ∩ boundaries 1172 0.08 0.08 < 0.05

LAPs ∩ HSs ∩ boundaries ∩ DSB-prone regions 836 0.06 0.05 < 0.05

a The number of features and their genomic span. b The number of LAPs that overlap with domain boundaries, HSs or DSB-prone regions, as well as the fraction
of unique LAPs in each intersection (as a proportion of the total dataset of 14,737 LAPs). The expected fraction (column 4) and the corresponding p value (column
5) were calculated based on 10,000 circular permutations in R. c Columns 2 and 3 as in b. The expected fraction (column 4) was calculated by multiplying the
respective fractions shown in column 3 of b. For example, the fraction of LAPs in the intersection “LAPs ∩ HSs ∩ DSB-prone regions” is equal to 0.16 × 0.69 = 0.11.
The hypergeometric test was used to assess the statistical significance of overlap (column 5)

Kaiser and Semple Genome Biology  (2018) 19:101 Page 6 of 14



pathway [52], as well as a high degree of genome fragility
for these non-LAP CTCF sites.
Conversely, we considered a stringent set of 2102

LAPs that are devoid of CTCF motifs, with no evidence
for CTCF ChIP-seq binding across ENCODE datasets.
With respect to mutation rates, these non-CTCF LAPs
behave similarly to CTCF-containing LAPs and contain
similar mutational signatures to CTCF-LAPs (Fig. 6 and
Additional file 1: Figure S6), while CTCF motifs inside
CTCF-LAPs showed no evidence for specific mutational
signatures associated with processes such as APOBEC
editing after single-strand DNA exposure [53, 54]
(Additional file 1: Figure S7). This suggests that the
genome architecture or other common features of
LAPs impact on their propensity to mutation, such as
the presence of enhancer-promoter loops [16].
The most common motifs at non-CTCF LAPs were the

promoter-associated motifs MA0506.1 (NRF1), MA0516.1
(SP2), and MA0079.3 (SP1), but none of these motifs
showed any enrichment compared to CTCF-binding LAPs.
Interestingly, the overlap between recombination HSs and
LAPs is confined to LAPs that bind CTCF and is not found
for the stringently defined set of 2102 non-CTCF LAPs.
Only 11% of non-CTCF LAPs overlap HSs (not significant
by circular permutations) and only 5% contain the PRDM9
motif, which is a significant depletion compared to expect-
ation (p = 0.0044).

Chromatin features influence increased mutation rates at
LAPs
LAPs are relatively GC-rich, enriched for histone modifica-
tions associated with active transcription (H3K27ac,
H3K27me3, H3K36me3, H3K4me3 and DNase sensitive
open chromatin) and depleted for the repressive mark
H3K9me3; they also tend to be found in relatively early rep-
licating regions of the genome (Additional file 1: Figure S3).

Recombination HSs also show locally increased GC con-
tent, but otherwise possess a contrasting set of features,
consistent with their presence in later replicating regions
(Additional file 1: Figure S3). Accordingly, LAPs tend to be
enriched for genes and actively transcribed regions [19],
whereas HSs are located, on average, further away from
genic sequence. This raises the possibility that the unusual
mutational properties of LAPs may be explained by their
distinctive chromatin and sequence features.
To investigate this further, we first identified the specific

tumour type most suited for an in-depth analysis.
Additional file 1: Figure S8 shows SNV and SV rates
around LAPs for all nine cancer types in this study
separately. SNV rates are consistently reduced near
LAPs in several tumour types, but there are excep-
tions, such as the malignant lymphoma (MALY-DE)
dataset, which does not show a pronounced dip in
mutation rates near LAPs even though it includes a
large number of SNVs (Additional file 1: Table S2). A
pan-cancer analysis is best suited to highlight general
patterns, but, for SVs in particular, stratifying muta-
tions by tumour type reduces the power to detect any
patterns on a per-tumour basis as SVs are, on aver-
age, ~ 100-fold less frequent than SNVs (Additional
file 1: Table S2). Beyond differences in dataset sample
sizes, the variability among tumour types most likely
reflects the limitations of the current Hi-C data,
which may be poorly matched to the cells in some
cancer samples. However, we could make use of the
high-resolution mammary epithelium LAPs from the
Rao et al. [19] dataset, which are well matched to the
breast cancer data, and a range of epigenetic informa-
tion is available for this tissue type; note that breast
cancer mutations showed both a clear dip in SNV
rates and a peak of SV rates near LAPs (Additional
file 1: Figure S8).
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Accordingly, we assessed the extent to which mam-
mary epithelium-derived chromatin features (from the
MCF-7 and MCF10A cell lines) and a variety of other
cell type-specific features were associated with mutation
rates in a large ICGC breast tumour dataset (BRCA-EU).
Specifically, we used random forest regression to con-
struct models of mutation rates observed within all 5-kb
windows from the 500-kb regions flanking all mammary
epithelium LAPs (derived from HMEC cell line Hi-C
data) plus the 5-kb LAP regions themselves (“Methods”).
Similar models have previously shown high predictive
accuracy in modelling aspects of nuclear organisation
and provide variable importance estimates that are
robust to the inter-correlated nature of chromatin fea-
ture input variables [11]. In our model, by far the most
important predictor of the BRCA-EU SNV rate was

replication timing, with reduced levels of mutation ob-
served in early replicating regions (Fig. 7), consistent with
other studies of breast cancer mutation patterns [40]. The
correlation coefficient between observed and predicted
SNV rates from the random forest model (r = 0.28; p value
< 10− 15) suggests a significant influence of the features in-
cluded but, overall, a moderate level of predictive accuracy.
Modelling was less successful in predicting BRCA-EU SV
breakpoint rates (r = 0.09 between observed and predicted
values) but also indicated a significant association with
chromatin and sequence features (p value < 10− 15)
(Fig. 7b). However, even though the magnitude of ef-
fects is rather modest, the direction of associations is
strikingly inverted for SNV and SV rates, such that the
variables most strongly correlated with elevated SV rates
(DNaseHS, replication timing, G-quadruplex content, GC
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content) are associated with decreased SNV rates (Fig. 7c).
We conclude that similar chromatin and sequence fea-
tures have moderate, but largely opposing, effects upon
SNV and SV rates at LAPs.
Cell type-specific features are not available for most of

the cancer types studied, but we carried out random for-
est regression analysis on mutation rates in each of the
nine tumour types separately, using, as input features,
only cell type-invariant features around the union set
of 14,737 LAPs (Additional file 1: Table S3). As ex-
pected, the previously reported associations between
mutation rates and replication timing, GC content
and quadruplex sequence are seen across all tumour
types. The estimates of the influence of overlapping LAPs
(the variable “LAPs” in Additional file 1: Table S3) on mu-
tation rates directly reflects the dip—or lack thereof—of
mutation rates at LAPs seen in a given tumour type
(Additional file 1: Figure S8). For example, in the case of
melanoma, where a strong decline in SNV rates is evident,
this variable influences mutation rates strongly as reflected
in a high %MSE score. In contrast, in malignant lymph-
oma, where the SNV decline at LAPs is very modest, LAP
overlap has little measurable effect on SNV rates.

Genes within recurrently disrupted chromatin loops are
enriched for functions in the cell cycle
Recent literature has documented tumours showing
oncogene upregulation as a result of disrupted CTCF
binding sites and chromatin loops in a variety of cancers
[1]. Using breakpoint data from all 1672 ICGC donors
and the union set of 14,737 CTCF-containing LAPs, we
find that genes within the top 5% most disrupted chro-
matin loops (possessing five or more SV breakpoints in
their LAPs) are enriched for functional annotation terms
associated with proliferation and the G1/S cell cycle
transition (Additional file 1: Table S4) [55]. The enrich-
ments of such putatively cancer-associated terms are
often only marginally significant given current sample
sizes, but are broadly consistent with previously reported
oncogenic disruptions [1]. Thus, it is possible that fre-
quent disruptions of chromatin loops and domain
boundaries in proximity to oncogenes in tumours are
driven by the unusual mutational biases at LAPs.
In the breast cancer dataset, we also observe an unex-

pected excess of overlap between recurrently disrupted
HMEC loops (bordered by LAPs that are disrupted in
at least two samples) and GWAS regions associated
with breast cancer: there were 40 such overlaps,
whereas only 18.1 overlaps were, on average, observed
in 5000 circular permutations (p = 0.0002). This excess
in overlap is notably larger than that observed for the
background set of all HMEC loops and GWAS hits
(225 observed overlaps and a mean of 143.6 expected
overlaps, based on 5000 permutations; p = 0.001),

suggesting a possible causal relationship between LAP
disruption and the breast cancer phenotype.

Common fragile sites and LAPs
Common fragile sites (CFSs) are large, initially cytoge-
netically defined, genomic regions characterized by high
rates of DNA breakage, active transcription and late rep-
lication [56, 57]. Interestingly, we found more LAP–gene
intersections for protein-coding genes within CFSs com-
pared to LAP–gene intersections in the genome as a
whole (0.77 and 0.47 LAPs per gene; relative proportion
test in R p < 10− 6), while the average replication timing
was indistinguishable between the two sets of LAPs
(Wilcoxon test in R, not significant). If genes are more
often interrupted by LAPs in fragile regions, this leaves
the intriguing possibility that at least a subset of CFSs
are caused by DNA looping and the instability associated
with LAPs.

Discussion
LAPs and recombination HSs are two seemingly unre-
lated features of the genome—one involved in chromatin
organisation and the other in recombination during mei-
osis—but both classes of sites emerge as hotspots for
DSBs. We have shown that LAPs and HSs often occur
in the same genomic locations, which suggests that the
same genomic regions that migrate to the chromosomal
axis during meiosis, ultimately forming the points of
breakage for DSB initiation [58], are also involved in
chromatin organisation in the interphase nucleus of
somatic cells. Intriguingly, cohesin, which associates with
CTCF at LAPs [59, 60], is also enriched at the meiotic
loop axis and plays a diverse role in chromosome pairing
in both mitosis and meiosis [61]. Coincidentally, a recent
study has shown that a subset of PRDM9 binding occurs at
CTCF sites in mouse spermatocytes, and an interaction be-
tween the two proteins has been suggested [62]. This obser-
vation is consistent with an enrichment of recombination
HSs at CTCF- LAPs (but not at non-CTCF LAPs), while
the enrichment of PRDM9 motifs within CTCF-LAPs also
suggests a sequence-based mechanism. A variety of factors,
many related to chromatin structure, affect the propensity
of LAPs to harbour SV breakpoints. PRDM9 also appears
to be active in at least a subset of cancer cells [50] and may
contribute to DSB formation at LAPs, suggesting another
possible link between LAPs and HSs. Further, the associ-
ation of LAPs with DSB formation appears to be at least
partly attributable to the enrichment of active promoters
and enhancers at LAPs, which is consistent with reports
that promoters are inherently prone to DSBs, in both som-
atic cells [41] and meiotic cells that lack PRDM9 [63].
However, we also observe an excess of DSBs at LAPs that
have no overlap with promoter or enhancer states, demon-
strating that DNA breakage is not solely due to these
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elements. LAPs are unusual with respect to replica-
tion timing, with LAPs replicating, on average, earlier
than their surrounding regions, consistent with the
dual roles of cohesin in stabilising chromatin loops
and also initiating replication [64]. Accordingly, chro-
matin looping may, to some extent, directly result
from the initiation of replication or, conversely, deter-
mine its starting position in the next cell cycle [65].
Given the strong association between LAPs and
DSB-prone regions, disruption of replication near
such origins may be one way in which genome in-
stability is introduced in cancer [66]. Notably, regions
stably bound by DNA binding proteins such as CTCF
seem to suffer high mutational loads due to replica-
tion errors [27].
LAPs are foci of DSB breakpoints and may provide

the raw material for cancer evolution via structural
variation, dependent on other factors, such as defi-
ciencies in DNA repair pathways. The resulting SVs
may have been subject to selection in cancer, though
the majority are likely to be ‘passenger’ variants that
drift toward fixation with little phenotypic conse-
quences in their tissue of origin. Accordingly, we ob-
serve a strong enrichment of somatic DSB formation
at LAPs in the NHEK cell line, more modest eleva-
tions in SV breakpoints around LAPs in cancers, and
only some evidence that the genes affected are those
that experience selection in cancers. At the human
population level, our results suggest that chromatin
loops are predominantly inherited as a genetic unit,
with recombination often confined to LAPs, and
therefore tending to preserve regulatory haplotypes.
Consistent with our results, recent studies have
shown that linkage disequilibrium (LD) blocks are
enriched within TADs, i.e. recombination between en-
hancers and their target genes is reduced within do-
mains [67]. Indeed, HSs themselves may primarily be
a by-product of particular chromatin environments,
replication timing and other functional constraints,
such as a lack of active transcription, which may
interfere with the recombination process [68].
We have used aggregate analysis across loop anchor

points and cancer types to show that a mutational bias
towards somatic breakage of chromatin loop anchors ex-
ists, consistent with recent experimental data from
mouse B cells [16]; notably, breakage is more prominent
in some cancer types than others and presumably de-
pends on the general genome instability of the tumour
type. The unusual DNA breakage patterns near LAPs
are likely to contribute to cancer evolution, reflected in
higher SV breakpoint levels, and allowing for novel pro-
moter–enhancer interactions. The increase in breakage
near LAPs is influenced by their specific chromatin en-
vironment and replication timing, DNA folding and

accessibility to the repair machinery. Similar influences
may underlie the surprising association of LAPs with
meiotic recombination events.

Conclusions
In this study, we show that chromatin loop anchor
points are fragile sites in the genome, acquiring DNA
breakage in a range of cellular contexts, such as in nor-
mal cell lines, in cancer and during meiosis. The impli-
cations of this are far-reaching, affecting gene regulation
in somatic tissues as well as the modular structure of the
genome during evolution.

Methods
LAP and recombination HS datasets
Chromatin loops for cell lines representing all human
germ layers (GEO dataset GM12878, HeLa, HMEC,
HUVEC, IMR90, K562 and NHEK) were derived from
unusually high resolution in situ Hi-C data, defining
LAPs at a resolution of 1–5 kb (accession GSE63525)
[19]. These loops are often conserved between cell lines,
such that 55–75% of the loops detected in any given cell
line were also found in the most deeply sequenced cell
line (GM12878), and around 50% appear to be con-
served across mammalian species [19]. The majority of
loops are also associated with convergently orientated
CTCF binding motifs at the putative LAPs, consistent
with the known roles of CTCF in loop formation [19].
On average, 17% of LAPs were only observed in one tis-
sue (Additional file 1: Figure S5), with more deeply se-
quenced cell lines consistently resulting in more LAPs
being called. From this dataset, we created a merged
dataset of 14,737 LAPs, centred around their associated
(and convergently orientated) CTCF motifs [19], which
represents the union of LAPs across all cell lines. For
this purpose, the seven files annotated as “looplist_-
with_motif” for human cell lines were downloaded from
the GEO dataset GSE63525; the genomic locations of
CTCF motifs assigned to LAPs were merged if overlap-
ping, such that each motif was only counted once, and
the flanking sequence extended to 5 kb. This merged
dataset was used for all analyses except for the breast
cancer-specific analysis, where we used only LAPs de-
rived from the HMEC (human mammary epithelial cells)
Hi-C data, and the DSB analysis, where tissue-matched
NHEK (normal human epidermal keratinocyte) LAPs
were used, both of which were provided by [19].
To establish a control set of CTCF sites that were pre-

sumably not acting as loop anchors, we intersected
CTCF motifs found in constitutively open chromatin
[21] with all LAPs of the Rao et al. [19] dataset (plus
10 kb of flanking region), which resulted in 1845 consti-
tutively bound CTCF motifs that were not found near
LAPs, 1300 of which were in a uniquely mappable
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sequence context. We want to highlight, however, that
this dataset may contain many false negatives, i.e. CTCF
sites that act as anchor points in undetected LAPs.
Conversely, we used a union set of 11,890 merged

LAPs for which a localized CTCF motif could not be
found as control non-CTCF LAPs. However, since Rao
et al. [19] had used very stringent search criteria for
CTCF anchor sites, such as requiring SMC3/RAD21
binding, we conservatively removed from this dataset
9539 LAPs in which we detected a CTCF motif, using
default search parameters in FIMO [69]. A further 249
of the remaining LAPs were bound by CTCF in encode
datasets [70], leaving a total of 2102 conservatively called
non-CTCF LAPs, 1578 of which were in a uniquely map-
pable sequence context. The sets of non-LAP CTCF sites
and non-CTCF LAPs were used to create Additional file 1:
Figure S4. To test for an enrichment of other transcription
factor binding motifs at non-CTCF LAPs, we intersected
the genomic coordinates of these LAPs with the locations
of 118 motifs found in constitutively open chromatin [21].
Recombination hotspot locations had been identified

in the phase II HapMap dataset (release 21) [71, 72]; re-
combination rates and SNP data were derived from
phase 3 of the 1000 Genomes Project [47]. For the mu-
tation rate analysis, we created 1-Mb windows around
the midpoints of LAPs and HSs and omitted regions
containing ENCODE blacklisted genomic regions
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/enco-
deDCC/wgEncodeMapability), resulting in 11,085 union
LAPs, 6214 HMEC LAPs, and 18,914 recombination HSs
plus their respective flanking regions. Median distances
between the centre points of adjacent features were
106,331 bp for union LAPs, 125,000 bp for HMEC LAPs
and 55,500 bp for HSs, respectively. We divided each
1-Mb region around a LAP into 5-kb non-overlapping
windows; measures of mutation rates and overlap with
other genomic features were calculated for each 5-kb bin.

Cancer mutation rates
Release_23 ICGC (https://dcc.icgc.org/) datasets with
whole-genome sequence-derived calls for both SNV and
SVs (not under publication moratorium in April 2017)
were included: BOCA-FR (bone cancer), BRCA-EU
(breast cancer), CLLE-ES (chronic lymphocytic leukemia),
LIRI-JP (liver cancer), MALY-DE (malignant lymphoma),
MELA-AU (skin cancer), OV-AU (ovarian cancer),
PACA-AU (pancreatic cancer), PAEN-AU (pancreatic
cancer), PAEN-IT (pancreatic cancer), EOPC-DE (early
onset prostate cancer), PRAD-CA (prostate cancer),
PRAD-UK (prostate cancer). The combined analysis in-
cluded a total of 32,105,808 SNVs and 368,480 structural
variants (Additional file 1: Table S1). We included all cat-
egories of structural variants that were listed in the ICGC
files (i.e. insertions, deletions, inversions etc.), recording

all breakpoint positions based on the coordinates of the
SVs (i.e. a single SV has two breakpoint positions). SNV
and breakpoint rates were intersected with the genomic
coordinates of LAPs and HSs. Confidence intervals (as
shown in Fig. 1) were calculated based on the assumption
that breakpoint and SNV rates are random processes and
follow the Poisson distribution: for this purpose, the ag-
gregate number of mutations over all samples and 5-kb
windows was calculated. This number is of the order of
half a million for SNVs and ~ 8000 for SVs. For example, a
5-kb window with ~ 4 SNVs per ICGC sample per mega-
base contains a total aggregate number of 506,363 SNVs
(4 SNVs × 5/1000 × 2284 samples × 11,085, the number
of times a window was sampled). The corresponding 95%
confidence interval for the aggregate number of SNVs was
calculated using the poisson.test() function in R, in the ex-
ample as [504,970, 507,760].
The R package SomaticSignatures [73] was used to cal-

culate mutational signatures at union CTCF-LAPs,
non-CTCF LAPS and CTCF motifs for each tissue type
separately.

Genomic features near LAPs and recombination HSs
Germline de novo mutation rates were reported for a
whole genome sequencing study of 283 Icelandic trios
[38]. A range of genomic features were generated by the
ENCODE consortium [74], including average replication
timing for each 5-kb genomic window, which was calcu-
lated based on the Repli-seq wavelet-smoothed signal for
MCF-7 (breast cancer) and HepG2 (liver cancer) cell
lines; open chromatin sites (DNAse hypersensitivity),
CTCF-binding in MCF-7; RAD51-binding in MCF-7;
Broad chromHMM tracks for chromatin state segmenta-
tion of HMEC; histone modifications (H3K27ac,
H3K09me3, H3K4me3, H3K36me3 and H3K27me3) in
MCF-7 and HepG2; nucleosome occupancy scores for
GM12878. Genomic features based on ChIP-seq data
were represented as genomic segments (peaks called) in
the ENCODE distributed files; the overlap (in base pairs)
between these features and genomic windows around
LAPs was calculated using bedtools [75]. GC content for
each 5-kb window was also calculated using bedtools
[75]. Sites predicted to adopt quadruplex conformations
were generated by Kudlicki [76] (http://moment.utm-
b.edu/allquads/). DSBs were detected using the DSBCap-
ture protocol in the NHEK cell line (GEO database
accession GSE78172) [41], and, as in Lensing et al. [41],
we used the intersection of both biological replicates as
a high confidence DSB peak set. ChIP-seq data for
BRCA1 binding in MCF-10A cells were generated by
Gardini et al. [77] and MACS2 [78] was used to call
peaks in BRCA1 binding using default parameters.
Average replication time was calculated from the

Wavelet-smoothed Signals of the 15 Encode cell types
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available at the UCSC Genome Browser site (http://gen-
ome.ucsc.edu/).

Random forest regression analysis of mutation rates
Random forest regression models were constructed using
the R package randomForest [79]. To construct a model with
200 trees, we extracted genomic regions within 1 Mb of a
HMEC LAP, merging overlapping regions, i.e. counting each
unique genomic region once. Response variables were the
number of BRCA-EU SNVs or SVs per 5-kb window, for a
total of 239,141 windows. Predictor variables were replica-
tion timing in MCF-7; GC content; quadruplex overlap;
HapMap recombination rate; DSB regions in NHEK cells;
MCF-7 DNAse hypersensitivity; BRCA1-binding in MCF-
10A; RAD51-binding in MCF-7; CTCF-binding in MCF-7;
PRDM9 motif coverage; overlap with peaks of H3K4me3,
H3K27ac, H3K36me3, H3K27me3 and H3K9me3 for MCF-
7 and MCF-10A cell lines; HMEC LAP presence.

Random forest regression analysis of BRCA1/2 binding
To model the outcome variables ‘BRCA1 binding’ and
‘RAD51 binding’ in MCF-10A and MCF-7 cell lines, re-
spectively, we divided the genome up into 5-kb windows
around 1 Mb of HMEC LAPs. Input features to the model
were all 15 Broad chromHMM states for state segmenta-
tion in HMEC cells as well as the overlap with HMEC
LAPs. Two-hundred random forest trees were constructed.

LAP and recombination HS overlap
Circular permutation within the R package RegioneR
[80] was used to assess the significance of genome-wide
overlap between LAPs and recombination HS, using
100,000 permutations. The FIMO algorithm [69] from
the MEME package [81] was used to scan the genome
for occurrences of the 13-bp PRDM9 motif CCTC
CCTNNCCAC, using default parameters; this resulted
in 51,107 motif locations being identified with a motif
match p value < 1.3e-06.

Functional enrichment analysis of recurrently disrupted
LAPs
Functional annotation enrichment analysis was carried
out for regions of interest using the GREAT tool to cal-
culate FDR-corrected hypergeometric q-values for the
default selection of annotation ontologies [82]. As the
background set for enrichment analyses, we used the
9973 genomic regions encompassed by all loops within
the union set of LAPs. As the foreground set, we used
398 genomic regions encompassed by LAPs disrupted
five or more times across tumour samples, correspond-
ing to the top 5% most disrupted loops.
Breast cancer associated SNPs were obtained from the

GWAS catalogue [83] (2017-05-29 release) and their co-
ordinates were extended by 5 kb (to account for LD

tagging of nearby causal SNPs) according to the average
span of LD blocks in 1000 Genomes Project data for
European populations [84]. The resulting GWAS
SNP-containing segments were merged using bedtools
[75] to create a non-redundant set of GWAS regions;
circular permutations were carried out in R to test for
an excess of overlap between the GWAS regions and
chromatin loops in the HMEC cell line.

Common fragile sites dataset
The genomic locations of 70 protein-coding genes within
CFSs (annotated as “common fragile sites”) were down-
loaded from the NCBI Gene database.

Programming languages
Datasets were downloaded and formatted using unix
shell scripting. Manuscript figures were created using
custom scripts in R [85].
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