7 research outputs found

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    Twin Premature Infants With Riboflavin and Biotin Deficiency Presenting With Refractory Lactic Acidosis, Rash, and Multiorgan Failure During Prolonged Parenteral Nutrition

    No full text
    We are reporting monochorionic, diamniotic twin premature infants born at 25 weeks and 6 days gestation with riboflavin (vitamin B2) and biotin (vitamin B7) deficiency, while on prolonged total parenteral nutrition (TPN) during vitamin shortage. They presented initially with skin rash, lactic acidosis, and thrombocytopenia. Both twins progressed to severe respiratory failure, severe lactic acidosis, with refractory vasodilatory shock, pancytopenia, ischemic bowel injury, acute kidney injury, liver injury, and capillary leak syndrome leading to death of twin A. The surviving twin B was diagnosed with riboflavin and biotin deficiency that presented with abnormal metabolic work up suggestive of maple syrup urine disease, glutaric acidemia type 2, and X-linked adrenoleukodystrophy. Twin B was started on riboflavin and biotin supplementation at 41 days of life, with rapid improvement in clinical findings and laboratory abnormalities within days of starting biotin and riboflavin supplementation. He was discharged home in stable condition at 49 weeks of postmenstrual age

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    A first update on mapping the human genetic architecture of COVID-19

    No full text
    corecore