802 research outputs found

    Physical activity when young provides lifelong benefits to cortical bone size and strength in men

    Get PDF
    The skeleton shows greatest plasticity to physical activity-related mechanical loads during youth but is more at risk for failure during aging. Do the skeletal benefits of physical activity during youth persist with aging? To address this question, we used a uniquely controlled cross-sectional study design in which we compared the throwing-to-nonthrowing arm differences in humeral diaphysis bone properties in professional baseball players at different stages of their careers (n = 103) with dominant-to-nondominant arm differences in controls (n = 94). Throwing-related physical activity introduced extreme loading to the humeral diaphysis and nearly doubled its strength. Once throwing activities ceased, the cortical bone mass, area, and thickness benefits of physical activity during youth were gradually lost because of greater medullary expansion and cortical trabecularization. However, half of the bone size (total cross-sectional area) and one-third of the bone strength (polar moment of inertia) benefits of throwing-related physical activity during youth were maintained lifelong. In players who continued throwing during aging, some cortical bone mass and more strength benefits of the physical activity during youth were maintained as a result of less medullary expansion and cortical trabecularization. These data indicate that the old adage of “use it or lose it” is not entirely applicable to the skeleton and that physical activity during youth should be encouraged for lifelong bone health, with the focus being optimization of bone size and strength rather than the current paradigm of increasing mass. The data also indicate that physical activity should be encouraged during aging to reduce skeletal structural decay

    Scenario development for D-T operation at JET

    Get PDF
    The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher additional heating power (32 MW neutral beam injection + 8 MW ion cyclotron resonance heating). There are several challenges presented by operations with the new wall: a general deterioration of the pedestal confinement; the risk of heavy impurity accumulation in the core, which, if not controlled, can cause the radiative collapse of the discharge; the requirement to protect the divertor from excessive heat loads, which may damage it permanently. Therefore, an intense activity of scenario development has been undertaken at JET during the last three years to overcome these difficulties and prepare the plasmas needed to demonstrate stationary high fusion performance and clear alpha particle effects. The paper describes the status and main achievements of this scenario development activity, both from an operational and plasma physics point of view.Peer reviewe

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.Peer reviewe

    Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns

    Get PDF
    Data on erosion and melting of beryllium upper limiter tiles, so-called dump plates (DP), are presented for all three campaigns in the JET tokamak with the ITER-like wall. High-resolution images of the upper wall of JET show clear signs of flash melting on the ridge of the roofshaped tiles. The melt layers move in the poloidal direction from the inboard to the outboard tile, ending on the last DP tile with an upward going waterfall-like melt structure. Melting was caused mainly by unmitigated plasma disruptions. During three ILW campaigns, around 15% of all 12376 plasma pulses were catalogued as disruptions. Thermocouple data from the upper dump plates tiles showed a reduction in energy delivered by disruptions with fewer extreme events in the third campaign, ILW-3, in comparison to ILW-1 and ILW-2. The total Be erosion assessed via precision weighing of tiles retrieved from JET during shutdowns indicated the increasing mass loss across campaigns of up to 0.6 g from a single tile. The mass of splashed melted Be on the upper walls was also estimated using the high-resolution images of wall components taken after each campaign. The results agree with the total material loss estimated by tile weighing (similar to 130 g). Morphological and structural analysis performed on Be melt layers revealed a multilayer structure of re-solidified material composed mainly of Be and BeO with some heavy metal impurities Ni, Fe, W. IBA analysis performed across the affected tile ridge in both poloidal and toroidal direction revealed a low D concentration, in the range 1-4 x 10(17) D atoms cm(-2).Peer reviewe

    Technology reviews by First Year Law Students

    Get PDF
    First year Law students submitted technology reviews as part of an assessment for their Legal Method course with the promise that the best reviews would be submitted to Compass.They were asked to base their reviews on any freely available app, tool, piece of software which you feel has a benefit for anyone studying or teaching LAW

    Role of the pedestal position on the pedestal performance in AUG, JET-ILW and TCV and implications for ITER

    Get PDF
    The role of the pedestal position on the pedestal performance has been investigated in AUG, JET-ILW and TCV. When the pedestal is peeling-ballooning (PB) limited, the three machines show a similar behaviour. The outward shift of the pedestal density relative to the pedestal temperature can lead to the outward shift of the pedestal pressure which, in turns, reduces the PB stability, degrades the pedestal confinement and reduces the pedestal width. Once the experimental density position is considered, the EPED model is able to correctly predict the pedestal height. An estimate of the impact of the density position on a ITER baseline scenario shows that the maximum reduction in the pedestal height is 10% while the reduction in the fusion power is between 10% and 40% depending on the assumptions for the core transport model usedIn other plasmas, where the pedestal density is shifted even more outwards relative to the pedestal temperature, the pedestal does not seem PB limited and a different behaviour is observed. The outward shift of the density is still empirically correlated with the pedestal degradation but no change in the pressure position is observed and the PB model is not able to correctly predict the pedestal height. On the other hand, the outward shift of the density leads to a significant increase of eta(e) and eta(i) (where eta(e,i) is the ratio of density to temperature scale lengths, eta(e,i) = L-eta e,L-i/L-Te,L-i) which leads to the increase of the growth rate of microinstabilities (mainly ETG and ITG) by 50%. This suggests that, in these plasmas, the increase in the turbulent transport due to the outward shift of the density might play an important role in the decrease of the pedestal performance.Peer reviewe

    Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children

    Get PDF
    INTRODUCTION: As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS: Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS: Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION: Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination

    A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET

    Get PDF
    The need for predictive capabilities greater than 95% with very limited false alarms are demanding requirements for reliable disruption prediction systems in tokamaks such as JET or, in the near future, ITER. The prediction of an upcoming disruption must be provided sufficiently in advance in order to apply effective disruption avoidance or mitigation actions to prevent the machine from being damaged. In this paper, following the typical machine learning workflow, a generative topographic mapping (GTM) of the operational space of JET has been built using a set of disrupted and regularly terminated discharges. In order to build the predictive model, a suitable set of dimensionless, machine-independent, physics-based features have been synthesized, which make use of 1D plasma profile information, rather than simple zero-D time series. The use of such predicting features, together with the power of the GTM in fitting the model to the data, obtains, in an unsupervised way, a 2D map of the multi-dimensional parameter space of JET, where it is possible to identify a boundary separating the region free from disruption from the disruption region. In addition to helping in operational boundaries studies, the GTM map can also be used for disruption prediction exploiting the potential of the developed GTM toolbox to monitor the discharge dynamics. Following the trajectory of a discharge on the map throughout the different regions, an alarm is triggered depending on the disruption risk of these regions. The proposed approach to predict disruptions has been evaluated on a training and an independent test set and achieves very good performance with only one tardive detection and a limited number of false detections. The warning times are suitable for avoidance purposes and, more important, the detections are consistent with physical causes and mechanisms that destabilize the plasma leading to disruptions.Peer reviewe

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb
    corecore