62 research outputs found

    Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus

    Get PDF
    We analyzed 65 samples of golden jackals (Canis aureus) collected in south-eastern and central Europe, the Caucasus, and from Estonia (north-eastern Europe). Microsatellite markers and partial sequences of the mitochondrial control region were used to characterize the genetic structure of jackals in the sampled regions. The main aim of the study was to identify possible source populations of the golden jackals in north-eastern Europe

    Brown bear attacks on humans : a worldwide perspective

    Get PDF
    The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.Peer reviewe

    Pilotstudie: Sekundenschlaf in der operativen Medizin

    No full text

    Organ system heterogeneity DB: A database for the visualization of phenotypes at the organ system level.

    No full text
    Perturbations of mammalian organisms including diseases, drug treatments and gene perturbations in mice affect organ systems differently. Some perturbations impair relatively few organ systems while others lead to highly heterogeneous or systemic effects. Organ System Heterogeneity DB (http://mips.helmholtz-muenchen.de/Organ_System_Heterogeneity/) provides information on the phenotypic effects of 4865 human diseases, 1667 drugs and 5361 genetically modified mouse models on 26 different organ systems. Disease symptoms, drug side effects and mouse phenotypes are mapped to the System Organ Class (SOC) level of the Medical Dictionary of Regulatory Activities (MedDRA). Then, the organ system heterogeneity value, a measurement of the systemic impact of a perturbation, is calculated from the relative frequency of phenotypic features across all SOCs. For perturbations of interest, the database displays the distribution of phenotypic effects across organ systems along with the heterogeneity value and the distance between organ system distributions. In this way, it allows, in an easy and comprehensible fashion, the comparison of the phenotypic organ system distributions of diseases, drugs and their corresponding genetically modified mouse models of associated disease genes and drug targets. The Organ System Heterogeneity DB is thus a platform for the visualization and comparison of organ system level phenotypic effects of drugs, diseases and genes

    Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept

    Get PDF
    OBJECTIVE: To retrospectively evaluate if texture-based radiomics features are able to detect interstitial lung disease (ILD) and to distinguish between the different disease stages in patients with systemic sclerosis (SSc) in comparison with mere visual analysis of high-resolution computed tomography (HRCT). METHODS: Sixty patients (46 females, median age 56 years) with SSc who underwent HRCT of the thorax were retrospectively analyzed. Visual analysis was performed by two radiologists for the presence of ILD features. Gender, age, and pulmonary function (GAP) stage was calculated from clinical data (gender, age, pulmonary function test). Data augmentation was performed and the balanced dataset was split into a training (70%) and a testing dataset (30%). For selecting variables that allow classification of the GAP stage, single and multiple logistic regression models were fitted and compared by using the Akaike information criterion (AIC). Diagnostic accuracy was evaluated from the area under the curve (AUC) from receiver operating characteristic (ROC) analyses, and diagnostic sensitivity and specificity were calculated. RESULTS: Values for some radiomics features were significantly lower (p < 0.05) and those of other radiomics features were significantly higher (p = 0.001) in patients with GAP2 compared with those in patients with GAP1. The combination of two specific radiomics features in a multivariable model resulted in the lowest AIC of 10.73 with an AUC of 0.96, 84% sensitivity, and 99% specificity. Visual assessment of fibrosis was inferior in predicting individual GAP stages (AUC 0.86; 83% sensitivity; 74% specificity). CONCLUSION: The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics might capture features indicating severity of SSc-ILD on HRCT, which are not recognized by visual analysis. KEY POINTS: Radiomics features can predict GAP stage with a sensitivity of 84% and a specificity of almost 100%. • Extent of fibrosis on HRCT and a combined model of different visual HRCT-ILD features perform worse in predicting GAP stage. • The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics might capture features on HRCT, which are not recognized by visual analysis

    Texture analysis of myocardial infarction in CT: Comparison with visual analysis and impact of iterative reconstruction

    Full text link
    OBJECTIVES To compare texture analysis (TA) with subjective visual diagnosis of myocardial infarction (MI) in cardiac computed tomography (CT) and to evaluate the impact of iterative reconstruction (IR). METHODS Ten patients (4 women, mean age 68 ± 11 years) with confirmed chronic MI and 20 controls (8 women, mean age 52 ± 11 years) with no cardiac abnormality underwent contrast-enhanced cardiac CT with the same protocol. Images were reconstructed with filtered back projection (FBP) and with advanced modeled IR at strength levels 3-5. Subjective diagnosis of MI was made by three independent, blinded readers with different experience levels. Classification of MI was performed using machine learning-based decision tree models for the entire data set and after splitting into training and test data to avoid overfitting. RESULTS Subjective visual analysis for diagnosis of MI showed excellent intrareader (kappa: 0.93) but poor interreader agreement (kappa: 0.3), with variable performance at different image reconstructions. TA showed high performance for all image reconstructions (correct classifications: 94%-97%, areas under the curve: 0.94-0.99). After splitting into training and test data, overall lower performances were observed, with best results for IR at level 5 (correct classifications: 73%, area under the curve: 0.65). CONCLUSIONS As compared with subjective, nonreliable visual analysis of inexperienced readers, TA enables objective and reproducible diagnosis of chronic MI in cardiac CT with higher accuracy. IR has a considerable impact on both subjective and objective image analysis
    corecore