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Abstract

Objective To retrospectively evaluate if texture-based radiomics features are able to detect interstitial lung disease (ILD) and to

distinguish between the different disease stages in patients with systemic sclerosis (SSc) in comparison with mere visual analysis

of high-resolution computed tomography (HRCT).

Methods Sixty patients (46 females, median age 56 years) with SSc who underwent HRCT of the thorax were retrospectively

analyzed. Visual analysis was performed by two radiologists for the presence of ILD features. Gender, age, and pulmonary function

(GAP) stage was calculated from clinical data (gender, age, pulmonary function test). Data augmentation was performed and the

balanced dataset was split into a training (70%) and a testing dataset (30%). For selecting variables that allow classification of the GAP

stage, single and multiple logistic regression models were fitted and compared by using the Akaike information criterion (AIC).

Diagnostic accuracy was evaluated from the area under the curve (AUC) from receiver operating characteristic (ROC) analyses, and

diagnostic sensitivity and specificity were calculated.

Results Values for some radiomics features were significantly lower (p < 0.05) and those of other radiomics features were significantly

higher (p = 0.001) in patients with GAP2 compared with those in patients with GAP1. The combination of two specific radiomics

features in amultivariablemodel resulted in the lowest AIC of 10.73with anAUCof 0.96, 84% sensitivity, and 99% specificity. Visual

assessment of fibrosis was inferior in predicting individual GAP stages (AUC 0.86; 83% sensitivity; 74% specificity).

Conclusion The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that

radiomics might capture features indicating severity of SSc-ILD on HRCT, which are not recognized by visual analysis.

Key Points

• Radiomics features can predict GAP stage with a sensitivity of 84% and a specificity of almost 100%.

• Extent of fibrosis on HRCT and a combined model of different visual HRCT-ILD features perform worse in predicting GAP stage.

• The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics

might capture features on HRCT, which are not recognized by visual analysis.

Keywords Systemic sclerosis . Pulmonary fibrosis . Artificial intelligence

Abbreviations

GAP stage Gender, age, and pulmonary function stage

HRCT High-resolution computed tomography

ILD Interstitial lung disease

SSc Systemic sclerosis

Introduction

Interstitial lung disease (ILD) is a well-known complication of

systemic sclerosis (SSc) affecting over 60% of patients [1–3]

and represents the leading cause of disease-related death [4].
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The detection of SSc-ILD is crucial because an early diag-

nosis of SSc-ILD has important prognostic and therapeutic

implications. Novel imaging approaches such as quantitative

computed tomography (CT) [5, 6], magnetic resonance imag-

ing (MRI) [7, 8], and nuclear imaging [9, 10] are applied in

ILD to provide prognostic, functional, and metabolic informa-

tion [11]. So far, high-resolution CT (HRCT), a non-invasive,

cost-effective, and sensitive technique, remains the gold stan-

dard for ILD diagnosis because it is able to detect lung in-

volvement prior to appearance of clinical symptoms and pro-

vides prognostic information [12–14]. However, there are

many features to determine the presence of ILD and inter-

reader variability, especially in unexperienced readers, is an

issue.

Most patients with SSc-ILD have mild or stable disease,

which does not warrant treatment, only surveillance [15].

However, the high morbidity and mortality of progressive

SSc-ILD define the need for early detection for therapeutic

intervention. Such a screening modality should combine both

high sensitivity and reproducibility.

Radiomics, defined as the conversion of medical images to

higher-dimensional data, is a novel research area. Feature ex-

traction is a crucial step in radiomics and comprises the com-

putation of texture, density, and shape from predefined re-

gions of interest (ROIs). Radiomics offers the advantage of

an objective quantification of tissue characteristics and en-

ables the detection of abnormalities in radiological images

not depicted by routine visual analysis [16–19]. Due to the

high objectivity and reliability of data, radiomics shows great

potential as support for clinical decision-making [20].

Radiomics has attracted increased attention in recent years,

and several studies show that radiomics can be of benefit in

terms of prognosis and diagnosis of multiple diseases, espe-

cially malignancies [21–23]. In SSc-ILD, to the best of our

knowledge, radiomics analyses have not yet been performed.

Currently, no validated single tools are established for stag-

ing in SSc-ILD although in clinical practice, a 70% threshold

of percentage predicted forced vital capacity (FVC [%]) and

extent of fibrosis on HRCT with a threshold of 20% are rou-

tinely used [13, 24]. Although most commonly employed,

pulmonary function tests as “stand-alone” examination are

inferior for diagnostic purposes than HRCT [2]. To overcome

the limitations of single factors, several composite scores have

been proposed: One of them is the so-called gender, age, and

pulmonary function (GAP) score and staging system, devel-

oped by Ley et al in 2012 [25]. The system uses four variables:

gender (G), age (A), and two pulmonary physiological param-

eters (P)—FVC [%] and percentage predicted diffusion capac-

ity of the lungs for carbon monoxide (DLCO [%]). The score

has been validated in the USA, Italy, and South Korea and

showed robust predictive power in patients with chronic ILD

[26, 27]. GAP stage is not routinely calculated in SSc-ILD,

and visual analysis of ILD criteria on HRCT does not, or not

sufficiently, reflect prognosis. We hypothesize that radiomics

features might provide important information on disease ex-

tent and could potentially influence individual patient

management.

In this retrospective pilot study, we aim to evaluate if

texture-based radiomics features are able to detect ILD and

to distinguish between the different disease stages in patients

with SSc-ILD in comparison with mere visual analysis of

HRCT.

Methods

Patients

Sixty patients (46 females, median age 56 years), who were

part of the SSc cohort at the University Hospital Zurich,

Switzerland (EUSTAR online Database [pre-BASEC-EK-

839, BASEC KEK-Nr.-2016-01515] and VEDOSS online

Database [BASEC-Nr.2010-158/5]), fulfilled the ACR/

EULAR classification criteria [28], and underwent HRCT

(Table 1) between January 2012 and October 2015 with signs

of ILD, were retrospectively included in the study. The corre-

sponding image analysis was done retrospectively.

Demographic and clinical data, as well as values for pulmo-

nary function tests (PFT), were acquired for each patient

(Table 1). The PFT indices included the actual values and

the percentage predicted values of a certain age, height, and

gender group (%predicted) of forced expiratory volume in 1 s

(FEV1), forced vital capacity (FVC), total lung capacity

(TLC), and diffusion capacity of carbon monoxide (DCLO).

In order to make results comparable throughout the study

population, %predicted values were used for statistical evalu-

ation. GAP stage was calculated according toMango et al [25,

29]. Patient characteristics are summarized in Table 1. The

retrospective study has been approved by the institutional re-

view board (BASEC-Nr. 2018-02165), and written informed

consent was sought from all patients.

HRCT protocol

All HRCT images were acquired in prone position in full

inspiration. HRCT scans were obtained with a 64-slice CT

scanner (Somatom Definition AS, Siemens Healthineers).

The CT protocol included a topogram and one series in prone

position in full inspiration. The following parameters were

used for the standard HRCT: tube voltage 120 kV, tube cur-

rent 30 mAs (reference dose, care dose: on), slice thickness: 1

mm, increment: 0.8 mm, kernel B70. The standard HRCTwas

reconstructed with iterative reconstruction (SAFIRE) strength

3 [30].
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ILD features on HRCT

The readout was performed by two radiologists (T.F. 16

and K.M. 5 years of experience in thoracic imaging) by

consensus: If there was disagreement between the two

readers, whether an HRCT feature was present or not,

re-assessment was performed until consensus was

reached. Images where evaluated for the presence of char-

acteristic visual ILD features (yes/no) including pulmo-

nary emphysema, honeycombing, subpleural lines, pleural

margins, bronchiectasis, ground-glass opacities, and retic-

ular changes (Fig. 1). A case-by-case evaluation was

performed.

Image analysis was performed on a standard picture archiv-

ing and communication system workstation (Impax, Version

6.5.5.1033; Agfa-Gevaert) and a high-definition liquid crystal

display monitor (BARCO; Medical Imaging Systems).

Visual assessment of lung fibrosis severity

Extent of lung fibrosis

According to Goh et al [13], estimation of disease extent de-

fined as definitely less than 20% (mild disease extent) or def-

initely more than 20% (severe disease extent) was performed.

All sections from the lung apex to the hemidiaphragm were

evaluated. In order to keep results specific for visual analysis,

we did not include the FVC threshold of 70% proposed by

Goh et al [13] in cases with an indeterminate extent of disease

on HRCT.

Table 1 Main patient

characteristics. n number of

patients, f/m female/male, y/n yes/

no, SD standard deviation, mRSS

modified Rodnan skin score, ILD

interstitial lung disease, HRCT

high-resolution computed tomog-

raphy. The PFT indices included

the percentage predicted values of

a certain age, height, and gender

group (%predicted) of forced ex-

piratory volume in 1 s (FEV1),

forced vital capacity (FVC), total

lung capacity (TLC), and diffu-

sion capacity of carbon monoxide

(DCLO). Percentage of fibrosis

per lung (fibrosis > 20%).

*Antibodies comprised anti-

centromere antibodies, anti-

nuclear antibodies, anti-

topoisomerase I antibodies, anti-

RNA-polymerase III antibodies,

and anti-U1nRNP antibodies.

**Immunosuppressive therapy

included prednisone, cyclophos-

phamide, methotrexate, azathio-

prine, mycophenolate mofetil, D-

penicillamine, rituximab, imatin-

ib, and anti-TNF (tumor necrosis

factor alpha) inhibitors.

***Expert opinion by

echocardiography

Patient information GAP1 GAP2 p value

Demographics

Number (n) 54 6

Gender (f/m) 48/6 4/2 0.129

Median age (range) 58 (23–82) 68 (54–80) 0.022

Mean mRSS score (range) 5.7 (0–31) 11.7 (0–22) 0.176

Disease subset

Limited cutaneous 22 (37%) 4 (67%) 0.224

Diffuse cutaneous 10 (17%) 1 (17%) > 0.999

Sclerodactyly only 17 (28%) 1 (17%) 0.452

Sine scleroderma 4 (7%) 0 (0%) 0.687

Other organ manifestations

GIT 33 (55%) 4 (67%) 0.791

Renal crisis 0 (0%) 0 (0%) > 0.999

Pulmonary arterial hypertension*** 10 (27%) 3 (50%) 0.076

Cardiac involvement 24 (40%) 1 (17%) 0.190

Auto-abs* 54 (100%) 6 (100%) > 0.999

Immunomodulatory therapy** 54 (100%) 6 (100%) > 0.999

Lung function

FEV1% (mean ± SD) 93 ± 16 61 ± 11 < 0.001

FVC% (mean ± SD) 98 ± 18 65 ± 26 0.035

TLC% (mean ± SD) 94 ± 21 57 ± 23 0.013

DCLO% (mean ± SD) 79 ± 19 56 ± 23 0.076

Features of ILD on HRCT

Pulmonary emphysema (y/n) 5 (8%) 3 (50%) 0.005

Honeycombing (y/n) 5 (8%) 3 (50%) 0.005

Subpleural lines (y/n) 46 (77%) 6 (100%) 0.311

Bronchiectasis (y/n) 19 (32%) 5 (83%) 0.022

Ground-glass opacities (y/n) 25 (42%) 4 (67%) 0.344

Reticular changes (y/n) 46 (77%) 6 (100%) 0.311

Pleural margins (y/n) 31 (52%) 5 (50%) 0.219

Mean coarseness score (± SD) 11.8 (± 3.3) 16.8 (± 3.3) 0.001

Fibrosis > 20% on HRCT (y/n) 8 (13%) 3 (50%) 0.257
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Pulmonary fibrosis was defined as presence of reticular

changes, honeycombing, or both.

Coarseness of lung fibrosis

The most extensive parenchymal pattern in each lobe was

recorded as categorical coarseness grade 0, normal lung;

grade 1, ground-glass opacity; grade 2, fine reticulation;

grade 3, coarse reticulation; and grade 4, honeycombing.

The primary coarseness score represented the sum of

coarseness grades (grade 0–4). To remove the effect of

pattern extent and prevent the underestimation of coarse-

ness severity in patients, in whom some lobes had no

parenchymal abnormality, the score was adjusted propor-

tionally to a six-lobe score [31]:

CS ¼ ∑n
1−n CGð Þ=LILD*6

where n is the number of lobes, CS is the coarseness

score, CG is the coarseness grade, and LILD is the number

of lobes with ILD.

Radiomics

3D lung segmentation

We chose to segment only the right lung, since the presence of

the heart on the left side potentially makes lung segmentation

more difficult and may lead to alteration of results. The right

lung of each patient was segmented semi-automatically with

dedicated softwareMIM (Version 6.0,MIM Software Inc.) by

setting the Hounsfield unit (HU) values from − 950 to − 150

HU. Where automatically registered borders did not corre-

spond with lung borders, manual corrections were made.

The hilar vessels were carefully excluded.

Extraction of texture features

Prior to analysis, all images were resampled to isotropic

voxels of 2 mm, using linear interpolation [32]. In total,

1116 features were extracted with two bin sizes (10 and 35

HU) corresponding to the following feature classes [33]:

– 4 shape features

– 19 intensity features

– 105 texture features (52 from the gray-level co-occur-

rence matrix, 5 from the neighborhood gray-tone differ-

encematrix, 32 from the gray-level run lengthmatrix, and

16 from the gray-level size zone matrix)

– 976 wavelet features (coiflet filtering)

Feature descriptions and mathematical definitions were

used as described (see the Supplemental Material).

Data augmentation

Data augmentation was performed using the imbalance pack-

age in R (version 3.4.0; R Foundation for Statistical

Computing) and applying a majority weighted minority

oversampling technique (MWMOTE) (details can be found

in the Supplemental Material). After applying the

MWMOTE technique, the dataset consisted of an equal num-

ber of GAP1 (n = 54) and GAP2 (n = 54) stage patients. An

example of data oversampling and resulting feature values is

shown in the Supplemental Material.

Splitting of the dataset into training and testing
datasets

In order to ensure the generalizability of the trained statistical

models, the balanced dataset was then randomly split into

separate training (n = 76 patients, n = 38 GAP1 and n = 38

GAP2) and testing dataset (n = 32 patients, n = 16 GAP1 and

n = 16 GAP2) using a ratio of 0.7:0.3. The entire dimension

reduction and feature selection process as further described in

Fig. 1 Features of interstitial lung disease (ILD) on high-resolution com-

puted tomography (HRCT)
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the “Results” section was performed only on the training

dataset.

Statistical analysis

Statistical analysis was performed in R (version 3.4.0; R

Foundation for Statistical Computing) with RStudio (version

1.0.136; RStudio). R packages used for statistical analysis are

described in the Supplemental Material. All continuous data

are given as means ± standard deviation. Categorical variables

are expressed as frequencies or percentages. A two-tailed p

value of < 0.05 was considered to indicate statistical signifi-

cance. Testing for group differences was performed by using

Wilcoxon’s signed-rank tests and Friedman’s test after

assessing normal distribution of the data. The chi-squared test

was used to compare categorical parameters.

For selecting variables that allow classification of GAP

stages 1 and 2, single and multiple logistic regression models

were fitted and compared by using the Akaike information

criterion (AIC). The misclassification rate of these models

was assessed by using 10-fold cross-validation. The diagnos-

tic accuracy of optimal predictive parameters was evaluated

from the area under the curve (AUC) from receiver operating

characteristic (ROC) analyses, and diagnostic sensitivity and

specificity were calculated.

Similarly, predictive value of ILD-HRCT features for the

GAP stage was tested.

Results

Visual assessment of HRCT

In 17 out of the 60 cases, readers disagreed about the presence

of ILD features. In these cases, disagreement was resolved in

consensus reading.

Eight patients showed pulmonary emphysema (13%), eight

honeycombing (13%), 52 subpleural lines (87%), 24 bronchi-

ectasis (40%), 29 ground-glass opacities (48%), 52 reticular

changes (87%), 36 pleural margins (60%), and 11 fibrosis

involving more than 20% of the lung parenchyma (18%).

Mean coarseness score was 12.3 (SD ± 3.6).

For detailed information and distribution of the features

among GAP stages, please refer to Table 1 and Fig. 2.

Highest AUC could be obtained when combining

honeycombing, emphysema, and bronchiectasis in a model,

which resulted in an AUC of 0.86 with a sensitivity of 100%

and a specificity of 63%.When performing ROC analysis, the

AUC for predicting GAP stage with extent of fibrosis (fibrosis

> 20%) is 0.606 (95% confidence interval 0.543–0.791, p =

0.145) with a sensitivity of 50% and a specificity of 85.2%.

When performing ROC analysis for coarseness score of

fibrosis, the AUC for predicting GAP stage reached 0.863

(95% confidence interval 0.703–1.000, p = 0.004) with a sen-

sitivity of 83% and a specificity of 74%. Differences between

predicting ROC curves with extent of fibrosis versus coarse-

ness of fibrosis were not statistically significant (p = 0.057).

Radiomics

Dimension reduction and radiomics feature selection

for classification of GAP1 versus GAP2 stage

Radiomics feature selection and dimension reduction were

performed on the augmented training dataset. After normali-

zation of all numeric features using z-score standardization,

features were fed into the Boruta dimension reduction and

feature elimination algorithm as described previously [25,

26], resulting in the selection of 73 features, which were con-

sidered most important for classification accuracy. Since the

Boruta algorithm does not account for collinearity in the data,

a correlation matrix was calculated in a next step in order to

detect clusters of highly correlated features (defined as

Pearson’s r ≥ .60; Fig. 3). After visualization of each single

parameter in box and whisker plots and random forest models

fitted separately on each of the six detected correlation clus-

ters, only one feature from each cluster with the highest Gini

index and visually the best separation between the two groups

(“GAP1” and “GAP2” stage) was selected for further analysis.

At the end of the multistep dimension reduction process, the

six most important and independent features were selected for

further statistical analyses: M_homogenity_n.LHL,

neighContrast.LHL, fractal_dim.LLL, M_correlation.HLL,

M_correlation.HHL, and sizeVar_n.LLH.

Training of statistical models for classification of GAP1 versus

GAP2 stage

In the original non-augmented dataset, values for

M_homogeni ty_n.LHL, M_correla t ion.HLL, and

sizeVar_n.LLH were significantly lower in patients with a

GAP stage of 2 when compared with those in patients with a

GAP stage of 1 (p = 0.003, 0.001, and 0.007, respectively;

Fig. 4 and Table 2). In contrast, values for neighContrast.LHL

were significantly higher in patients with a GAP stage of 2 (p

= 0.001). No significant differences were observed for

fractal_dim.LLL and correlation.HHL, although the differ-

ence for fractal_dim.LLL reached statistical significance in

the augmented dataset.

Single and multiple logistic regression models were fitted

on the training dataset and compared according to their AIC.

In single logistic regression models, M_homogenity_n.LHL

and neighContrast.LHL showed the lowest AIC with 21.13

and 23.81, respectively (fractal_dim.LLL: 98.37,

M_correlation.HLL: 41.50, correlation.HHL: 107.16, and

sizeVar_n.LLH: 75.59). Results of the corresponding ROC
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Fig. 3 Correlogram illustrating

auto- and cross-correlations of the

73 most important features in dif-

ferentiating GAP1 and GAP2

stages. Features were reordered

after hierarchical clustering for

visualizing different feature clus-

ters. Six clusters of radiomics

features became apparent (rectan-

gular boxes; the first two clusters

were visually assumed to belong

to the same cluster). Blue circles

indicate positive correlation, and

red circles negative correlation.

The larger the circle and the

darker the color, the higher is the

correlation between two variables

Fig. 2 Varying grades of fibrosis

within the same GAP stages.

Patients with a, b GAP stage 1

and c, d GAP stage 2. a A 43-

year-old female patient with

GAP1 shows subpleural reticula-

tions, subpleural lines, and some

ground-glass opacification—

overall less than 10% of fibrosis.

b A 56-year-old female patient

with GAP1 shows basal and

subpleural reticulations, ground-

glass opacities, and subpleural

lines accounting for more than

20% of lung fibrosis. cA 69-year-

old female patient with GAP2

shows only discrete subpleural

lines. No other signs of fibrosis

are visualized. d An 80-year-old

male patient with GAP2 showing

subpleural reticulations accompa-

nied by ground-glass

opacification, subpleural lines,

and pleural margins in the right

lung

1992 Eur Radiol (2021) 31:1987–1998



analyses for the training, testing, and the original (non-

augmented) datasets are shown in Table 3.

C o m b i n i n g M _ h o m o g e n i t y _ n . L H L a n d

neighContrast.LHL in a model resulted in a higher AIC

(21.94) and showed collinearity of the two features without

significant improvement of diagnostic sensitivity and specific-

i ty. The combinat ion of neighContrast .LHL and

M_correlation.HLL in a multivariable model finally resulted

Fig. 4 Box and whisker plots

show differences of the 6 most

important radiomics features

selected during the multistep

dimension reduction and feature

selection process between GAP1

and GAP2 patients. Center line in

each box represents median.

Lower and upper limits of each

box represent the 25th and 75th

percentiles, respectively.

Whiskers extend to most extreme

observations within 25th and 75th

percentiles ± 1.5 × interquartile

range. Observations outside these

whiskers are shown as dots

Table 2 Results of radiomics. GAP stage gender, age, and pulmonary function stage, n number of patients

Variable GAP1 (n = 54) GAP2

(original; n = 6)

GAP2

(augmented; n = 54)

p value

GAP1 versus

GAP2 (original)

p value

GAP1 versus

GAP2 (augmented)

M_homogenity_n.LHL 0.73 ± 0.14 0.33 ± 0.27 0.25 ± 0.18 .003 < 0.001

neighContrast.LHL 0.31 ± 0.17 0.77 ± 0.26 0.81 ± 0.15 .001 < 0.001

fractal_dim.LLL 0.58 ± 0.20 0.39 ± 0.39 0.36 ± 0.25 .171 < 0.001

M_correlation.HLL 0.49 ± 0.21 0.18 ± 0.09 0.16 ± 0.07 .001 < 0.001

correlation.HHL 0.49 ± 0.20 0.57 ± 0.11 0.54 ± 0.07 .235 0.057

sizeVar_n.LLH 0.47 ± 0.22 0.22 ± 0.10 0.21 ± 0.06 .007 < 0.001
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in the lowest AIC of 10.73 with an AUC of 1.00, 100% sen-

sitivity, and 97% specificity in the training dataset; an AUC of

0.92, 100% sensitivity, and 88% specificity in the test dataset;

and an AUC of 0.96, 84% sensitivity, and 99% specificity in

the original dataset (Fig. 5 and Table 3).

Ten-fold cross-validation of this model in the independent

test dataset resulted in a cross-validation estimate of an accu-

racy of 0.88 (95% confidence interval 0.71–0.97).

Discussion

HRCT imaging together with PFT is currently the gold

standard for a cost-effective, non-invasive assessment of

ILD [34]. However, features to determine the presence of

ILD are manifold and inter-reader variability, especially

in unexperienced readers, is an issue. Radiomics, in con-

trast, is an objective imaging-based tool that enables a

more detailed and reliable quantitative assessment of le-

sion characteristics, which is not hampered by subjective

image interpretation and experience of the reader as in

visual analysis.

In this study, we were able to show that radiomics features

can predict GAP stage with a sensitivity of 84% and a speci-

ficity of almost 100%. Extent of fibrosis on HRCT and a

combined model of different visual HRCT-ILD features per-

formed worse in predicting GAP stage. We believe that this is

due to the high inter-reader variability, even in expert radiol-

ogists, in determining the presence and severity of ILD

features.

Since the dataset in our patient cohort was imbalanced

regarding the distribution of the two classes with 54 patients

in GAP1 stage, but only six patients in GAP2 stage (imbal-

anced ratio: 0.11)—thereby reflecting the prevalence of GAP1

versus GAP2 stages in our cohort of SSc patients—we per-

formed a data augmentation step in order to achieve better

class balance and to avoid model overfitting before further

evaluation. This data augmentation technique does not affect

the reliability of the statistical evaluation, and results have

been additionally tested on the original dataset.

Extracted radiomics features can be divided into four

groups, namely (1) first-order histogram-based features, (2)

co-occurrence matrix-based features, (3) multiscale features,

and (4) other features [35, 36]. The latter are part of a specific

group of features that are related to neighborhood gray-tone

difference matrix (GTDM) [35, 37, 38]. The GTDM is based

on measuring the difference between the intensity level be-

tween each voxel and its neighboring voxels, resulting in fea-

tures to resemble the human perception of the image.

Homogeneity (M_homogenity_n.LHL) reflects the homoge-

neity of image textures and scales the local changes of image

texture. High values of homogeneity denote the absence of

intra-regional changes and locally homogenous distribution

in image textures [39]. Fractal features (fractal_dim.LLL) pro-

v i d e impo r t a n t s p a t i a l i n f o rma t i o n . Con t r a s t

(neighContrast.LHL) and correlation (M_correlation.HLL

and correlation.HHL) rely on perceptual attributes of texture

in terms of spatial changes in intensity or dynamic range of

intensity [35, 37, 38]. In our study, the combination of

neighContrast.LHL and M_correlation.HLL in a multivari-

able model resulted in an AUC of 0.92, 100% sensitivity,

and 88% specificity in the test dataset and an AUC of 0.96,

84% sensitivity, and 99% specificity in the original dataset.

AUC of the ROC curve for percentage of fibrosis was signif-

icantly worse in predicting GAP stage, and also, a model

combining different HRCT-ILD features performed less well

than radiomics did. These findings raise the question, if

radiomics is able to capture features on HRCT which are not

perceptible by the radiologist with the naked eye?

Radiomics has attracted increased attention in recent years,

and several studies show that radiomics can be of benefit in

terms of prognosis and diagnosis of multiple diseases,

Fig. 5 Graphs show receiver operating characteristics (ROC) analyses for

the best classifying models of GAP1 versus GAP2 stage. ROC analysis

indicates accuracy, sensitivity, and specificity of the best performing

models applied on the (a) independent testing dataset and on the (b)

original (non-augmented) dataset. Panel c showing ROC analyses for

classifying GAP stage with visual analysis of extent of fibrosis (fibrosis

> 20%) and coarseness of fibrosis
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especially malignancies [21–23]. These studies have shown

that radiomics features show great potential to serve as surro-

gate imaging markers for tissue biopsies [40] and reliably

predict outcome [41–44] and drug response [45, 46].

Currently, there are different approaches for the evaluation

of HRCT, namely (1) visual analysis, (2) semiquantitative

analysis, and (3) quantitative analysis or automated ap-

proaches using artificial intelligence. While sheer visual anal-

ysis suffers from a relatively high inter-observer variability

[47, 48], semiquantitative and quantitative analyses (such as

densitometric analysis) have the potential to overcome the

drawbacks of subjective visual assessment of CT images and

have also been shown to correlate with therapeutic response

outperforming qualitative analysis [48].

In the past decade, radiomics gained importance in medical

imaging. Unlike computer-aided detection (CAD) systems,

which are directed toward delivering a single answer (i.e.,

presence of a lesion or cancer), radiomics is a process de-

signed to extract a large number of quantitative features from

digital images, which are subsequently mined for hypothesis

generation and testing. Recent data from non-malignant lung

diseases suggest that the texture-based analysis of CT data

might outperform the currently used visual and/or histogram

measures for diagnosis and staging [49–51]. The process of

radiomics-based stratification of data provides a far more de-

tailed characterization of phenotypes than current criteria can.

Compared with other studies [52], we did not train the

algorithm to recognize specific patterns or features, such as

honeycombing or bronchiectasis. We trained the system to

find an algorithm to differentiate between the different GAP

stages. With this approach, we omitted to use pattern-based

classifications coming from known guidelines for pulmonary

fibrosis, as this might not reflect the activity of the disease and

might narrow the diagnosis. By just providing lung function,

age and gender as input parameters, the validation of the al-

gorithm is quite open and thus, best-discriminating radiomics

features might come from feature groups that are not per se

visible or quantifiable by the radiologist.

At present, data on radiomics in ILD are limited. The ac-

cumulating results, however, are promising and underline the

great potential of radiomics in HRCT for detection and stag-

ing. In the future, the use of radiomics in SSc-ILD manage-

ment could be expanded to support treatment decisions.

Future studies integrating both radiomics and tissue-based

molecular information, however, will be needed to assess

whether radiomics reflect the underlying pathophysiology

and thereby allow distinguishing inflammatory from fibrotic

processes. This would be the prerequisite for treatment guid-

ance toward anti-inflammatory or anti-fibrotic drugs in the

individual patient.

The limitations of this study include as follows: firstly,

the GAP staging system consists of three stages (low, in-

termediate, high). We only have patients with GAP stages

1 and 2 in our cohort and the percentage of patients with

GAP stage 2 is relatively small, thereby reflecting the prev-

alence of GAP1 versus GAP2 stage in our clinical popula-

tion. We performed a data augmentation step in order to

achieve better class balance and to avoid model overfitting.

Secondly, we only evaluated data from one institution ac-

quired with one CT scanner. Since differences in scanning

parameters such as type of CT scanner, tube voltage, tube

current, reconstruction kernel, and contrast agent may in-

fluence the results of quantitative analysis, our approach

might need to be adapted for future use with other scanners

and protocols. Further studies with higher patient numbers,

on other scanners, are needed to validate our findings and

to investigate potential outcome predictors in a longitudi-

nal study setting. Thirdly, we chose the right lung for im-

age evaluation. Even though evaluation of the left site in

our patient population (see Supplemental material) showed

comparable results between the two sides, we prefer to use

the right lung for image evaluation, since the left lung, due

to the proximity of the left lower lobe and lingula to the

heart, might be more prone to motion artifacts due to car-

diac pulsation and might therefore deliver less robust re-

sults. We acknowledge that in cases with asymmetrical

lung involvement, this approach might alter the results.

Finally, lung segmentation was performed semiautomati-

cally. This approach gave us the opportunity to correct

datasets, where automatically registered borders did not

correspond with lung borders.

Conclusion

The correlation of radiomics with GAP stage, yet not

with the visually defined features of ILD-HRCT, implies

that radiomics might capture features indicating severity

of SSc-ILD on HRCT, which are not recognized by

visual analysis.

The texture-based radiomics features identified in this pilot

study will pave the way for the assessment whether texture-

based radiomics signatures may be valuable tools for

computer-aided decision-making in imaging.
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