24 research outputs found

    Apolipoprotein-CIII O-Glycosylation, a Link between GALNT2 and Plasma Lipids

    Get PDF
    Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.</p

    IgG N-glycans are associated with prevalent and incident complications of type 2 diabetes

    Get PDF
    Aims/Hypothesis:Inflammation is important in the development of type 2 diabetes complications. The N-glycosylation of IgG influences its role in inflammation. To date, the association of plasma IgG N-glycosylation with type 2 diabetes complications has not been extensively investigated. We hypothesised that N-glycosylation of IgG may be related to the development of complications of type 2 diabetes. Methods: In three independent type 2 diabetes cohorts, plasma IgG N-glycosylation was measured using ultra performance liquid chromatography (DiaGene n = 1815, GenodiabMar n = 640) and mass spectrometry (Hoorn Diabetes Care Study n = 1266). We investigated the associations of IgG N-glycosylation (fucosylation, galactosylation, sialylation and bisection) with incident and prevalent nephropathy, retinopathy and macrovascular disease using Cox- and logistic regression, followed by meta-analyses. The models were adjusted for age and sex and additionally for clinical risk factors. Results: IgG galactosylation was negatively associated with prevalent and incident nephropathy and macrovascular disease after adjustment for clinical risk factors. Sialylation was negatively associated with incident diabetic nephropathy after adjustment for clinical risk factors. For incident retinopathy, similar associations were found for galactosylation, adjusted for age and sex. Conclusions: We showed that IgG N-glycosylation, particularly galactosylation and to a lesser extent sialylation, is associated with a higher prevalence and future development of macro- and microvascular complications of diabetes. These findings indicate the predictive potential of IgG N-glycosylation in diabetes complications and should be analysed further in additional large cohorts to obtain the power to solidify these conclusions.</p

    Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes:An IMI-DIRECT study

    Get PDF
    AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk

    Gender differences in respiratory symptoms in 19-year-old adults born preterm

    Get PDF
    Objective: To study the prevalence of respiratory and atopic symptoms in (young) adults born prematurely, differences between those who did and did not develop Bronchopulmonary Disease (BPD) at neonatal age and differences in respiratory health between males and females. Methods: Design: Prospective cohort study. Setting: Nation wide follow-up study, the Netherlands. Participants: 690 adults (19 year old) born with a gestational age below 32 completed weeks and/or with a birth weight less than 1500g. Controls were Dutch participants of the European Community Respiratory Health Survey (ECRHS). Main outcome measures: Presence of wheeze, shortness of breath, asthma, hay fever and eczema using the ECRHS-questionnaire
    corecore