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Abstract

Aim

Subclasses of different glycaemic disturbances could explain the variation in characteristics

of individuals with type 2 diabetes (T2D). We aimed to examine the association between

subgroups based on their glucose curves during a five-point mixed-meal tolerance test

(MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D.

Methods

The study included 787 individuals with newly diagnosed T2D from the Diabetes Research

on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was

used to identify distinct glucose curve subgroups during a five-point MMT. Using general lin-

ear models, these subgroups were associated with metabolic traits at baseline and after 18

months of follow up, adjusted for potential confounders.

Results

At baseline, we identified three glucose curve subgroups, labelled in order of increasing glu-

cose peak levels as subgroup 1–3. Individuals in subgroup 2 and 3 were more likely to have

higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1.

At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol)

increased across subgroups with 0.37 (-0.18–1.92) for subgroup 2 and 1.88 (-0.08–3.85) for

subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of tri-

glycerides and fasting glucose.

Conclusions

Different glycaemic profiles with different metabolic traits and different degrees of subse-

quent glycaemic deterioration can be identified using data from a frequently sampled mixed-

meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater

metabolic risk.

Introduction

Recent studies have shown significant heterogeneity in glucose response curves from oral glu-

cose tolerance tests (OGTTs) in individuals with elevated risk of type 2 diabetes (T2D) [1–4].

Additionally, these glucose curves had distinct glycaemic risk profiles and were associated with

future disease risk. Whether such distinct glycaemic profiles can also be identified in individu-

als with T2D has not been investigated to date. People with T2D differ in their rate of glycae-

mic deterioration and number and type of complications, indicating that T2D is a

heterogeneous disease with different underlying pathophysiological mechanisms [5]. There-

fore, studying the heterogeneity in glucose response curves and whether these glucose curves

have distinct metabolic profiles may help improve our understanding of the different underly-

ing pathophysiologies. We therefore aimed to examine the association between subgroups
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based on glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic

traits at baseline and glycaemic deterioration in individuals with T2D.

Materials and methods

Study population

We used data from the Innovative Medicines Initiative-Diabetes Research on Patient Stratifi-

cation (IMI-DIRECT) Study, which is described in detail elsewhere [6]. In brief, 789 individu-

als diagnosed with T2D within 6 to 24 months were recruited from six European clinical

centers. Individuals were only recruited at baseline if they were using metformin therapy or on

lifestyle management. If participants started using any diabetes medication or changed, this

information was recorded at the next study visit. All participants signed informed consents

and the IMI-DIRECT’s Data Access Committee—responsible for reviewing, approving and

enabling access to data—approved this study. The study also conformed to the Declaration of

Helsinki standards. We excluded those missing fasting glucose at baseline (n = 2) and those

lost to follow-up (n = 119), thus 787 and 668 individuals with T2D were included in the analy-

sis at baseline and follow-up respectively. At follow-up, MMT subgroups were identified in

651 individuals after excluding those missing fasting glucose (n = 17) (Fig 1). All individuals

were white European adults, aged 35 to 75 years.

MMT assessment

MMTs were performed at baseline and at 18 months after a 10-hour overnight fast. Blood was

sampled at 0, 30, 60, 90 and 120 min. Participants were asked to stop the use of metformin,

when used, 24 hours before the study visit. Participants consumed a 250ml liquid drink (Forti-

sip; 18.4 g carbohydrate per 100 ml) over a period of 2–5 min. Plasma glucose (mmol/l) was

determined using the enzymatic glucose hexokinase method (Konelab 20 XT Clinical Chemis-

try analyzer, Thermo Fisher Scientific, Vantaa, Finland). C-peptide (nmol/l) and plasma insu-

lin (pmol/l) were determined using chemiluminometric immunoassay (Liaison Insulin and

Liaison C-peptid, DiaSorin S.p.A, Saluggia, Italy). HbA1c (mmol/mol) was measured by ion-

Fig 1. Flow chart of inclusion (n = 668) and exclusion (n = 221) of participants in the DIRECT study.

https://doi.org/10.1371/journal.pone.0242360.g001
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exchange high performance liquid chromatography on a TOSOH G8 analyser (Tosoh Biosci-

ence, Inc, CA, USA). Triglycerides, total and high density lipoprotein (HDL) cholesterol were

enzymatically assessed. More details on sample handling and biomarker determination are

described elsewhere [6].

Assessment of covariates

Questionnaires were used to collect data on age, sex, parental diabetes status, disease history,

study center, smoking status, alcohol consumption and medication for diabetes and other con-

ditions. Additionally, waist circumference (cm), BMI (kg/m2), blood pressure (mmHg) and

physical activity (mgs) were determined at baseline and follow-up.

Data analysis

Latent class trajectory analysis (LCTA) with cubic polynomials for the specification of time

was used to identify glucose curve subgroups from MMT at baseline and at follow-up. The

latent class mixed-effects models (lcmm) package in R (version 3.2.1) was used to conduct the

LCTA. A random slope and random intercept were specified in the lcmm procedure. A ran-

dom intercept was included to account for the correlation of measurements from the same

individual. Optimal number of groups at baseline and follow-up was delineated by adding one

more latent group at a time. To account for the chance of convergence to local maxima, the

LCTA procedure was embedded in a gridsearch function. The best-fitting classification model

was determined based on the Bayesian Information Criterion (BIC) and the Akaike Informa-

tion Criterion (AIC). The lowest BIC and AIC suggesting the best fit and a difference of at

least 10 points was regarded as sufficient improvement. The individuals were then assigned to

a particular group based on their highest membership probability. Additionally, all mean

membership probabilities for each class should be> 0.8 and this was also used to select the

final number of groups. Furthermore, we produced plots of serum insulin levels corresponding

to each subgroup’s glucose response curve at baseline.

We used general linear models to calculate coefficients (β) and 95% confidence intervals

(CI) to estimate the association of identified subgroups with baseline metabolic traits and

change in these metabolic traits at 18 months. We adjusted the p-values for multiple testing

using the Bonferroni correction method.

Two multivariable models were formulated for the prospective analyses. Model 1 was

adjusted for age, sex, follow-up, study center and respective baseline metabolic traits. Model 2

was additionally adjusted for smoking status, physical activity, family history of diabetes, dia-

betes duration and diabetes medication. Missing values were below 5% for all covariates with

the exception of physical activity (8.4%). Therefore, we did a single imputation for physical

activity values using the predictive mean matching method in the MICE (Multivariate Imputa-

tion by Chained Equations) package in R [7].

Furthermore, we compared baseline metabolic traits across individuals moving from sub-

groups at baseline to similar, lower or higher peak subgroups at follow-up.

For sensitivity analyses, we identified the baseline glucose curve subgroups stratified by

study center and sex.

Results

The analysis included 787 individuals at baseline; 58% men, age 62.1 ±8.1, BMI 30.5 ±5.0 kg/

m2 and HbA1c 46.5 ±5.8 mmol/mol (6.2 ±0.5%) (Table 1).

We identified three subgroups with different glucose patterns following an MMT, labelled

in order of increasing glucose peak levels as subgroup 1–3 (Fig 2), consisting of 139 (18%), 466
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(59%) and 182 (23%) individuals, respectively (Table 1). Subgroup 1 had the earliest and lowest

glucose peak (8.4 mmol/l), while subgroup 3 took the longest to reach peak and had the highest

glucose peak (13.1 mmol/l), and subgroup 2 had a glucose peak of 10.0 mmol/l. Membership

probabilities were all above 0.80, ranging from 0.86 to 0.90. The four subgroup solution met all

but one of the selection criteria, one of the membership probabilities was below 0.8 (S1 Fig and

Table 2). Stratified by sex and center, three similar subgroups were identified. Heterogeneity

was also evident in the insulin response curve subgroups. Subgroup 1 had the earliest and

Table 1. Characteristics of 787 individuals with type 2 diabetes stratified by glucose curve groups.

Characteristic Glucose curve groups1

Subgroup 1 Subgroup 2 Subgroup 3

Number of participants 139 466 182

Age (years) 61.3 (7.5) 62.2 (8.0) 61.1 (8.6)

Sex, men [n] 87 (63%) 272 (58%) 97 (53%)

BMI (kg/m2) 30.0 (5.0) 30.9 (5.0) 30.2 (4.8)

Waist circumference (cm) 101.4 (13.5) 104.3 (13.3) 102.2 (12.8)

Smoking Status Current [n] 21 (15%) 65 (14%) 20 (11%)

Alcohol Status Never [n] 26 (19%) 71 (15%) 35 (19%)

Physical activity (mgs) 37.6 (11.2) 33.8 (9.3) 33.8 (9.8)

Systolic blood pressure (mmHg) 127.5 (15.4) 131.1 (15.0) 133.5 (17.0)

Diastolic blood pressure (mmHg) 74.6 (9.3) 75.2 (9.7) 76.5 (9.0)

HbA1c (mmol/mol) 43 (5) 46 (5) 50 (6)

HbA1c (%) 6.1 (0.4) 6.4 (0.5) 6.7 (0.6)

C-peptide (pmol/l) 908.6 (303.7) 1117.9 (416.9) 1122.2 (375.9)

Total cholesterol (mmol/l) 4.2 (1.4) 4.2 (1.1) 4.4 (1.1)

LDL (mmol/l) 2.4 (1.1) 2.3 (0.9) 2.4 (1.0)

HDL (mmol/l) 1.2 (0.4) 1.2 (0.4) 1.2 (0.4)

Triglycerides (mmol/l) 1.1 [0.9,1.5] 1.4 [1.0,1.9] 1.5 [1.1,2.0]

Fasting insulin (pmol/l) 83.8 (54.9) 110.5 (74.3) 113.8 (69.8)

Glucose peak values (mmol/l)2 8.4 10.0 13.1

2h postprandial insulin (pmol/l) 150.7 [99.8,258.5] 405.8 [253.4,615.0] 463.4 [321.7,624.1]

Fasting plasma glucose (mmol/l) 6.4 (1.3) 7.1 (1.2) 7.9 (1.7)

1h postprandial glucose(mmol/l) 8.0 (2.3) 10.0 (2.1) 12.3 (2.5)

2h postprandial glucose(mmol/l) 5.0 (1.3) 8.3 (1.6) 12.3 (1.9)

Diabetes duration 1.2 (0.9) 1.7 (6.6) 1.8 (5.4)

Diabetes meds at baseline (metformin) Yes [n] 32 (23%) 158 (35%) 82 (45%)

Changed diabetes meds during follow-up Yes [n] 12 (8%) 81 (17%) 61 (35%)

Center [n (row %)]

Copenhagen 10 (19) 25 (48) 17 (33)

Lund 25 (26) 58 (60) 13 (14)

Newcastle 12 (9) 84 (60) 45 (32)

Exeter 32 (23) 103 (62) 31 (15)

Dundee 35 (19) 100 (62) 31 (19)

Hoorn 25 (15) 96 (57) 45 (27)

Family history, parents Yes [n(%)] 55 (40) 168 (36) 67 (37)

1 Mean ± SD for continuous data and all such values unless stated otherwise.
2 We assessed the highest glucose value in each subgroup as the peak.

Abbreviations: BMI: body mass index; 2h:2 hour; LDL: low density lipoproteins; HDL: high density lipoproteins.

https://doi.org/10.1371/journal.pone.0242360.t001
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lowest insulin peak with the lowest 2-hour insulin value, while subgroup 3 had the latest insu-

lin peak and highest 2-hour value (S2 Fig). Individuals in higher glucose peak subgroups i.e.

subgroup 2 and 3, were more likely to have higher metabolic trait values such as higher BMI,

insulin and glucose values compared to individuals in subgroup 1 (Table 1) and hence a less

favourable metabolic risk profile compared to individuals in subgroup 1.

At 18 month follow-up, the beta-coefficients (95% CI) for change in HbA1c (mmol/mol)

significantly increased across subgroups with 0.37 (-0.18–1.92) for subgroup 2 and 1.88

(-0.08–3.85) for subgroup 3, relative to subgroup 1 (Table 3). The same trend was observed for

change in triglycerides and fasting glucose with the exception of HDL. Generally, individuals

in subgroup 2 and 3 progressed faster in metabolic parameters than individuals in subgroup 1.

The optimum number of glucose curve subgroups identified at follow-up was four with the

fourth subgroup having the highest peak, fasting and 2-hour glucose values (Fig 3). The

Fig 2. Glucose curve subgroups following a MMT depicting estimated mean trajectories with 95% confidence

intervals identified by the latent class trajectory analysis in individuals with type 2 diabetes (n = 787).

https://doi.org/10.1371/journal.pone.0242360.g002

Table 2. Bayesian and Akaike Information Criterion and mean posterior probability values.

Highest mean posterior probabilities in each class >80%

Number of classes BIC AIC Class 1 Class 2 Class 3 Class 4

1-class 14952.48 14910.47

2-class 14633.14 14567.79 0.90 0.90

3-class 14535.27 14446.57 0.86 0.89 0.88

4-class 14393.16 14505.20 0.85 0.82 0.87 0.75

Abbreviations: BIC: Bayesian Information Criterion; AIC: Akaike Information Criterion.

https://doi.org/10.1371/journal.pone.0242360.t002
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percentage of individuals moving from subgroups at baseline to higher peak subgroups at fol-

low-up was 38%, 15% and 7% for subgroup 1–3, respectively. Individuals from baseline sub-

groups moving to lower peak subgroups at follow-up were 27% and 46% for subgroup 2 and 3,

respectively. In short, majority of participants in subgroups at baseline remained in the same

subgroups at follow-up (Table 4). Individuals moving from baseline subgroups to higher peak

subgroups at follow-up, were more likely to have higher BMI, waist circumference, diastolic

pressure, hbA1c, fasting glucose and fasting insulin. They were also more likely to be males,

use metformin and had the highest family history of T2D. Most of these characteristics includ-

ing change in T2D medication were lowest in those moving from higher peak baseline sub-

groups to lower peak subgroups at follow-up (S1 Table).

Discussion

Using data from 787 individuals with T2D, who had undergone a frequently sampled MMT,

combined with the LCTA approach, three glucose curve subgroups were identified. The indi-

viduals within these subgroups differed in their metabolic traits at baseline and their rates of

subsequent glycaemic deterioration over 18 months. Individuals with T2D in the subgroups

Table 3. Association between glucose curve groups and metabolic traits measured at 18 months in 668 individuals with type 2 diabetes.

Characteristics Glucose curve groups1

Subgroup 1 Subgroup 2 Subgroup 3 P-Value

Number of participants 125 389 154

Follow up (months) 18.2 (0.5) 18.2 (0.6) 18.3 (0.8)

HBA1c (mmol/mol) -

Model 1 - 0.48 (-1.01,1.99) 2.66 (0.76,4.57) <0.001

Model 2 - 0.37 (-0.18,1.92) 1.88 (-0.08,3.85) <0.001

Triglycerides (mmol/l)2

Model 1 - 0.09 (-0.06,0.24) 0.09 (-0.10,0.28) <0.001

Model 2 - 0.10 (-0.06,0.25) 0.13 (-0.05,0.31) <0.001

Total cholesterol (mmol/l)

Model 1 - -0.11 (-0.28,0.05) -0.05 (-0.24,0.15) 0.188

Model 2 - -0.10 (-0.27,0.19) -0.02 (-0.23,0.44) 0.227

LDL (mmol/l)

Model 1 - -0.07 (-0.22,0.07) -0.01 (-0.19,0.35) 0.323

Model 2 - -0.07 (-0.22,0.08) 0.01 (-0.17,0.19) 0.150

HDL (mmol/l)

Model 1 - -0.09 (-0.14,-0.04) -0.11 (-0.17,-0.05) <0.001

Model 2 - -0.08 (-0.13,-0.03) -0.09 (-0.15, 0.03) 0.002

Plasma insulin (pmol/l)2

Model 1 - -3.24 (-15.17,8.68) -11.50 (-25.62,2.62) 0.012

Model 2 - -5.06 (-17.85,7.73) -15.88 (-31.08,0.68) 0.250

Fasting glucose (mmol/l)

Model 1 - 0.12 (-0.19,0.43) 0.79 (0.39,1.18) <0.001

Model 2 - 0.06 (-0.26,0.38) 0.59 (0.19,0.99) <0.001

1 Values are Beta coefficients (95% confidence intervals).
2 Variables were log transformed before analysis.

Abbreviations: HbA1c: glycated haemoglobin; T2D: type 2 diabetes. Model 1 is adjusted for age, sex, study center, baseline values and follow up. Model 2 is adjusted for

model 1 plus DM medication, family history of parents DM status, DM duration, physical activity and smoking status. P-values (significance level <0.05) remained

robust after Bonferroni correction for multiple testing.

https://doi.org/10.1371/journal.pone.0242360.t003
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with the highest plasma glucose peaks and the highest 1-hour and 2-hour glucose levels (sub-

groups 2 and 3) had the worst metabolic traits profile, compared to individuals in the subgroup

with the lowest and earliest glucose peak. Moreover, individuals moving from baseline sub-

groups to higher peak subgroups at follow-up had the worst metabolic traits profile compared

to those moving from higher peak baseline subgroups to lower peak subgroups at follow-up.

To the best of our knowledge, there is no study that has exhaustively studied the heteroge-

neity in glucose curves following an MMT in individuals with T2D. However, several studies

identified glucose response curves following an OGTT in those at elevated diabetes risk [1, 4,

8], and most of them identified four glucose response subgroups. The disparity in the number

of subgroups between these studies and ours could be because we had a relatively more

homogenous group of individuals with T2D (without insulin therapy) and hence less heteroge-

neity. Nevertheless, the subgroups with the highest peaks and 1-hour value in these studies had

the worst metabolic risk profile which is in line with our findings.

Fig 3. Glucose curve subgroups following a MMT depicting estimated mean trajectories of the 4 group solution

identified by the latent class trajectory analysis in 651 individuals with type 2 diabetes at 18 months of follow-up.

https://doi.org/10.1371/journal.pone.0242360.g003

Table 4. Comparisons of subgroups identified at baseline and at follow-up.

Baseline groups [n(row%)] Follow-up groups

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4

Subgroup 1 78 (62) 42 (34) 5 (4) 0 (0)

Subgroup 2 104 (27) 220 (57) 61 (16) 1 (0)

Subgroup 3 8 (6) 55 (40) 67 (48) 10 (7)

https://doi.org/10.1371/journal.pone.0242360.t004
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The various plausible mechanisms that could explain the differences in the identified sub-

groups in our study include differences in insulin resistance and secretion. Subgroup 2 and 3

had higher BMI, insulin and glucose values, thereby indicating that they were more insulin

resistant than those in subgroup 1. Subgroup 2 and 3 also had higher 1-hour glucose values

compared to subgroup 1 and studies showed that higher 1-hour plasma glucose is associated

with an increased risk of T2D complications [9–14]. High 1-hour glucose value could be a

result of impaired early phase insulin secretion and reduced insulin sensitivity which could

explain the heterogeneity we see in the subgroups.

Some limitations of our study include the limited generalizability of our results to other eth-

nicities due to the inclusion of only white European adults. Second, a short follow-up time of

18 months does not allow us to investigate associations with hard cardiovascular outcomes.

Lastly, we did not have information on adherence to diabetes drugs which might influence

progression within the 18 months period, however, we adjusted for the use of diabetes medica-

tion to try and mitigate this. Our study was strengthened by the use of a large sample with elab-

orate metabolic parameters at baseline and follow up.

In conclusion, different glycaemic profiles with different metabolic traits and different

degrees of subsequent glycaemic deterioration can be identified using data from a frequently

sampled MMT in individuals with T2D. This heterogeneity in glucose curves suggests different

underlying pathophysiologies. However, more similar studies should be done to confirm the

robustness of these results.
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