14 research outputs found

    Simultaneous MFN2 and GDAP1 mutations cause major mitochondrial defects in a patient with CMT

    Get PDF
    Mutations in the MFN2 gene are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a dominant axonal CMT, whereas mutations in GDAP1 are associated with recessive demyelinating CMT (CMT4A), recessive axonal CMT (AR-CMT2), and dominant axonal CMT (CMT2K). Both proteins are involved in energy metabolism and dynamics of the mitochondrial network. We have previously reported that, in fibroblasts from patients with CMT, MFN2 mutations resulted in a mitochondrial energy coupling defect, whereas dominant mutation in GDAP1 resulted in defective complex I activity. In this study, we investigated mitochondrial bioenergetics from a severely affected patient with CMT harboring combined mutations in both GDAP1 and MFN2 genes

    Long-term treatment of cutaneous manifestations of tuberous sclerosis complex with topical 1% sirolimus cream: A prospective study of 25 patients

    No full text
    International audienceBACKGROUND:Data on long-term topical sirolimus treatment of the cutaneous manifestations of tuberous sclerosis complex are rare.OBJECTIVE:To evaluate the long-term benefit and tolerance of topical 1% sirolimus in tuberous sclerosis complex.METHODS:In this 18-month prospective single-center study, 1% sirolimus cream was applied daily to facial angiofibromas (FAs), fibrous cephalic plaques (FCPs), shagreen patches, hypomelanotic macules, and ungual fibromas. After complete clearance (CC) of FAs, we evaluated a maintenance protocol of 3 applications weekly.RESULTS:Twenty-five patients were enrolled. Fifty percent obtained CC of FAs within 9 months. Of 7 patients with CC (58%) who were following the maintenance protocol, 6 relapsed within 7 months and 1 was still responding at 1 year. Of 16 patients with FCPs, 7 (44%) remained stable at 12 months and 9 (56%) improved after 3 to 9 months of treatment. Only 1 of 5 patients treated for shagreen patches showed improvement at 12 months. Treatment was well tolerated with no serious adverse events.LIMITATIONS:The small number of patients was a limitation.CONCLUSIONS:Topical 1% sirolimus applied daily produced positive responses in treatment of FAs, FCPs, and facial hypomelanotic macules and was well tolerated. A 3-times-weekly maintenance protocol did not prevent FA relapses

    Exophiala dermatitidis Revealing Cystic Fibrosis in Adult Patients with Chronic Pulmonary Disease

    No full text
    International audienceCystic fibrosis (CF) is a genetic inherited disease due to mutations in the gene cystic fibrosis transmembrane conductance regulator (CFTR). Because of the huge diversity of CFTR mutations, the CF phenotypes are highly heterogeneous, varying from typical to mild form of CF, also called atypical CF. These atypical features are more frequently diagnosed at adolescence or adulthood, and among clinical signs and symptoms leading to suspect a mild form of CF, colonization or infection of the respiratory tract due to well-known CF pathogens should be a warning signal. Exophiala dermatitidis is a melanized dimorphic fungus commonly detected in respiratory specimens from CF patients, but only very rarely from respiratory specimens from non-CF patients. We described here two cases of chronic colonization of the airways by E. dermatitidis, with recurrent pneumonia and hemoptysis in one patient, which led clinicians to diagnose mild forms of CF in these elderly patients who were 68- and 87-year-old. These cases of late CF diagnosis suggest that airway colonization or respiratory infections due to E. dermatitidis in patients with bronchiectasis should led to search for a mild form of CF, regardless of the age and associated symptoms. On a broader level, in patients with chronic respiratory disease and recurrent pulmonary infections, an allergic bronchopulmonary mycosis or an airway colonization by CF-related fungi like E. dermatitidis or some Aspergillus, Scedosporium or Rasamsonia species, should be considered as potential markers of atypical CF and should led clinicians to conduct investigations for CF diagnosis

    Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K)

    Get PDF
    International audienceMutations in GDAP1, an outer mitochondrial membrane protein responsible for recessive Charcot-Marie-Tooth disease (CMT4A), have also been associated with CMT2K, a dominant form of the disease. The three CMT2K patients we studied carried a novel dominant GDAP1 mutation, C240Y (c.719G &gt; A). Mitochondrial respiratory chain complex I activity in fibroblasts from CMT2K patients was 40% lower than in controls, whereas the tubular mitochondria were 33% larger in diameter and the mitochondrial mass was 20% greater. Thus, besides the regulatory role GDAP1 plays in mitochondrial network dynamics, it may also be involved in energy production and in the control of mitochondrial volume.</p

    CFTR -France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants

    No full text
    International audienceMost of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles

    A National French Consensus on Gene List for the Diagnosis of Charcot–Marie–Tooth Disease and Related Disorders Using Next-Generation Sequencing

    No full text
    International audienceNext generation sequencing (NGS) is strategically used for genetic diagnosis in patients with Charcot–Marie–Tooth disease (CMT) and related disorders called non-syndromic inherited peripheral neuropathies (NSIPN) in this paper. With over 100 different CMT-associated genes involved and ongoing discoveries, an important interlaboratory diversity of gene panels exists at national and international levels. Here, we present the work of the French National Network for Rare Neuromuscular Diseases (FILNEMUS) genetic diagnosis section which coordinates the seven French diagnosis laboratories using NGS for peripheral neuropathies. This work aimed to establish a unique, simple and accurate gene classification based on literature evidence. In NSIPN, three subgroups were usually distinguished: (1) HMSN, Hereditary Motor Sensory Neuropathy, (2) dHMN, distal Hereditary Motor Neuropathy, and (3) HSAN, Hereditary Sensory Autonomic Neuropathy. First, we reported ClinGen evaluation, and second, for the genes not evaluated yet by ClinGen, we classified them as “definitive” if reported in at least two clinical publications and associated with one report of functional evidence, or “limited” otherwise. In total, we report a unique consensus gene list for NSIPN including the three subgroups with 93 genes definitive and 34 limited, which is a good rate for our gene’s panel for molecular diagnostic use

    Variants Within TSC2 Exons 25 and 31 Are Very Unlikely to Cause Clinically Diagnosable Tuberous Sclerosis

    No full text
    Inactivating mutations in TSC1 and TSC2 cause tuberous sclerosis complex (TSC). The 2012 international consensus meeting on TSC diagnosis and management agreed that the identification of a pathogenic TSC1 or TSC2 variant establishes a diagnosis of TSC, even in the absence of clinical signs. However, exons 25 and 31 of TSC2 are subject to alternative splicing. No variants causing clinically diagnosed TSC have been reported in these exons, raising the possibility that such variants would not cause TSC. We present truncating and in-frame variants in exons 25 and 31 in three individuals unlikely to fulfil TSC diagnostic criteria and examine the importance of these exons in TSC using different approaches. Amino acid conservation analysis suggests significantly less conservation in these exons compared with the majority of TSC2 exons, and TSC2 expression data demonstrates that the majority of TSC2 transcripts lack exons 25 and/or 31 in many human adult tissues. In vitro assay of both exons shows that neither exon is essential for TSC complex function. Our evidence suggests that variants in TSC2 exons 25 or 31 are very unlikely to cause classical TSC, although a role for these exons in tissue/stage specific development cannot be excluded

    Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects

    No full text
    International audienceNon-syndromic arthrogryposis multiplex congenita (AMC) is characterized by multiple congenital contractures resulting from reduced fetal mobility. Genetic mapping and whole exome sequencing (WES) were performed in 31 multiplex and/or consanguineous undiagnosed AMC families. Although this approach identified known AMC genes, we here report pathogenic mutations in two new genes. Homozygous frameshift mutations in CNTNAP1 were found in four unrelated families. Patients showed a marked reduction in motor nerve conduction velocity (\textless10 m/s) and transmission electron microscopy (TEM) of sciatic nerve in the index cases revealed severe abnormalities of both nodes of Ranvier width and myelinated axons. CNTNAP1 encodes CASPR, an essential component of node of Ranvier domains which underlies saltatory conduction of action potentials along the myelinated axons, an important process for neuronal function. A homozygous missense mutation in adenylate cyclase 6 gene (ADCY6) was found in another family characterized by a lack of myelin in the peripheral nervous system (PNS) as determined by TEM. Morpholino knockdown of the zebrafish orthologs led to severe and specific defects in peripheral myelin in spite of the presence of Schwann cells. ADCY6 encodes a protein that belongs to the adenylate cyclase family responsible for the synthesis of cAMP. Elevation of cAMP can mimic axonal contact in vitro and upregulates myelinating signals. Our data indicate an essential and so far unknown role of ADCY6 in PNS myelination likely through the cAMP pathway. Mutations of genes encoding proteins of Ranvier domains or involved in myelination of Schwann cells are responsible for novel and severe human axoglial diseases
    corecore