75 research outputs found

    Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123

    Get PDF
    P-glycoprotein (P-gp) expression at the blood-brain barrier prevents unwanted blood-borne toxins and signalling molecules from entering the brain. Primary and immortalised human brain endothelial cells (BECs) represent two suitable options for studying P-gp function in vitro. The limited supply of primary human BECs and their instability over passage number makes this choice unattractive for medium/high throughput studies. The aim of this study was to further characterise the expression of P-gp by an immortalised human BEC line, hCMEC/D3, in order to evaluate their use as an in vitro human blood-brain barrier model. P-gp expression was stable over a high passage number (up to passage 38) and was polarised on the apical plasma membrane, consistent with human BECs in vivo. In addition, hCMEC/D3 cell P-gp expression was comparable, albeit slightly lower to that observed in primary isolated human BECs although P-gp function was similar in both cell lines. The P-gp inhibitors tariquidar and vinblastine prevented the efflux of rhodamine 123 (rh123) from hCMEC/D3 cells, indicative of functional P-gp expression. hCMEC/D3 cells also displayed polarised P-gp transport, since both tariquidar and vinblasine selectively increased the apical-to-basolateral permeability of hCMEC/D3 cells to rh123. The results presented here demonstrate that hCMEC/D3 cells are a suitable model to investigate substrate specificity of P-gp in BECs of human origin

    Delivery of a national prenatal exome sequencing service in England: a mixed methods study exploring healthcare professionals’ views and experiences

    Get PDF
    Copyright \ua9 2024 Peter, Mellis, McInnes-Dean, Daniel, Walton, Fisher, Leeson-Beevers, Allen, Baple, Beleza-Meireles, Bertoli, Campbell, Canham, Cilliers, Cobben, Eason, Harrison, Holder-Espinasse, Male, Mansour, McEwan, Park, Smith, Stewart, Tapon, Vasudevan, Williams, Wu, Chitty and Hill.Introduction: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England, requiring the coordination of care from specialist genetics, fetal medicine (FM) and laboratory services. This mixed methods study explored the experiences of professionals involved in delivering the pES service during the first 2 years of its delivery in the NHS. Methods: A survey (n = 159) and semi-structured interviews (n = 63) with healthcare professionals, including clinical geneticists, FM specialists, and clinical scientists (interviews only) were used to address: 1) Views on the pES service; 2) Capacity and resources involved in offering pES; 3) Awareness, knowledge, and educational needs; and 4) Ambitions and goals for the future. Results: Overall, professionals were positive about the pES service with 77% rating it as Good or Excellent. A number of benefits were reported, including the increased opportunity for receiving actionable results for parental decision-making, improving equity of access to genomic tests and fostering close relationships between FM and genetics departments. Nonetheless, there was evidence that the shift to offering pES in a clinical setting had brought some challenges, such as additional clinic time, administrative processes, perceived lack of autonomy in decision-making regarding pES eligibility and difficulty engaging with peripheral maternity units. Concerns were also raised about the lack of confidence and gaps in genomics knowledge amongst non-genetics professionals - especially midwives. However, the findings also highlighted value in both FM, obstetric and genetics professionals benefiting from further training with a focus on recognising and managing prenatally diagnosed genetic conditions. Conclusion: Healthcare professionals are enthusiastic about the benefits of pES, and through multi-collaborative working, have developed relationships that have contributed to effective communication across specialisms. Although limitations on resources and variation in knowledge about pES have impacted service delivery, professionals were hopeful that improvements to infrastructure and the upskilling of all professionals involved in the pathway would optimise the benefits of pES for both parents and professionals

    Delivery of a national prenatal exome sequencing service in England: a mixed methods study exploring healthcare professionals' views and experiences

    Get PDF
    Introduction: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England, requiring the coordination of care from specialist genetics, fetal medicine (FM) and laboratory services. This mixed methods study explored the experiences of professionals involved in delivering the pES service during the first 2 years of its delivery in the NHS. Methods: A survey (n = 159) and semi-structured interviews (n = 63) with healthcare professionals, including clinical geneticists, FM specialists, and clinical scientists (interviews only) were used to address: 1) Views on the pES service; 2) Capacity and resources involved in offering pES; 3) Awareness, knowledge, and educational needs; and 4) Ambitions and goals for the future. Results: Overall, professionals were positive about the pES service with 77% rating it as Good or Excellent. A number of benefits were reported, including the increased opportunity for receiving actionable results for parental decision-making, improving equity of access to genomic tests and fostering close relationships between FM and genetics departments. Nonetheless, there was evidence that the shift to offering pES in a clinical setting had brought some challenges, such as additional clinic time, administrative processes, perceived lack of autonomy in decision-making regarding pES eligibility and difficulty engaging with peripheral maternity units. Concerns were also raised about the lack of confidence and gaps in genomics knowledge amongst non-genetics professionals - especially midwives. However, the findings also highlighted value in both FM, obstetric and genetics professionals benefiting from further training with a focus on recognising and managing prenatally diagnosed genetic conditions. Conclusion: Healthcare professionals are enthusiastic about the benefits of pES, and through multi-collaborative working, have developed relationships that have contributed to effective communication across specialisms. Although limitations on resources and variation in knowledge about pES have impacted service delivery, professionals were hopeful that improvements to infrastructure and the upskilling of all professionals involved in the pathway would optimise the benefits of pES for both parents and professionals

    Delivery of a national prenatal exome sequencing service in England: a mixed methods study exploring healthcare professionals’ views and experiences

    Get PDF
    IntroductionIn October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England, requiring the coordination of care from specialist genetics, fetal medicine (FM) and laboratory services. This mixed methods study explored the experiences of professionals involved in delivering the pES service during the first 2 years of its delivery in the NHS.MethodsA survey (n = 159) and semi-structured interviews (n = 63) with healthcare professionals, including clinical geneticists, FM specialists, and clinical scientists (interviews only) were used to address: 1) Views on the pES service; 2) Capacity and resources involved in offering pES; 3) Awareness, knowledge, and educational needs; and 4) Ambitions and goals for the future.ResultsOverall, professionals were positive about the pES service with 77% rating it as Good or Excellent. A number of benefits were reported, including the increased opportunity for receiving actionable results for parental decision-making, improving equity of access to genomic tests and fostering close relationships between FM and genetics departments. Nonetheless, there was evidence that the shift to offering pES in a clinical setting had brought some challenges, such as additional clinic time, administrative processes, perceived lack of autonomy in decision-making regarding pES eligibility and difficulty engaging with peripheral maternity units. Concerns were also raised about the lack of confidence and gaps in genomics knowledge amongst non-genetics professionals - especially midwives. However, the findings also highlighted value in both FM, obstetric and genetics professionals benefiting from further training with a focus on recognising and managing prenatally diagnosed genetic conditions.ConclusionHealthcare professionals are enthusiastic about the benefits of pES, and through multi-collaborative working, have developed relationships that have contributed to effective communication across specialisms. Although limitations on resources and variation in knowledge about pES have impacted service delivery, professionals were hopeful that improvements to infrastructure and the upskilling of all professionals involved in the pathway would optimise the benefits of pES for both parents and professionals

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill & Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Prevalence, phenotype and architecture of developmental disorders caused by de novo mutation: The Deciphering Developmental Disorders Study

    Get PDF
    Individuals with severe, undiagnosed developmental disorders (DDs) are enriched for damaging de novo mutations (DNMs) in developmentally important genes. We exome sequenced 4,293 families with individuals with DDs, and meta-analysed these data with published data on 3,287 individuals with similar disorders. We show that the most significant factors influencing the diagnostic yield of de novo mutations are the sex of the affected individual, the relatedness of their parents and the age of both father and mother. We identified 94 genes enriched for damaging de novo mutation at genome-wide significance (P < 7 × 10−7), including 14 genes for which compelling data for causation was previously lacking. We have characterised the phenotypic diversity among these genetic disorders. We demonstrate that, at current cost differentials, exome sequencing has much greater power than genome sequencing for novel gene discovery in genetically heterogeneous disorders. We estimate that 42% of our cohort carry pathogenic DNMs (single nucleotide variants and indels) in coding sequences, with approximately half operating by a loss-of-function mechanism, and the remainder resulting in altered-function (e.g. activating, dominant negative). We established that most haplo insufficient developmental disorders have already been identified, but that many altered-function disorders remain to be discovered. Extrapolating from the DDD cohort to the general population, we estimate that developmental disorders caused by DNMs have an average birth prevalence of 1 in 213 to 1 in 448 (0.22-0.47% of live births), depending on parental age
    corecore