285 research outputs found

    A pragmatic approach to multi-class classification

    Full text link
    We present a novel hierarchical approach to multi-class classification which is generic in that it can be applied to different classification models (e.g., support vector machines, perceptrons), and makes no explicit assumptions about the probabilistic structure of the problem as it is usually done in multi-class classification. By adding a cascade of additional classifiers, each of which receives the previous classifier's output in addition to regular input data, the approach harnesses unused information that manifests itself in the form of, e.g., correlations between predicted classes. Using multilayer perceptrons as a classification model, we demonstrate the validity of this approach by testing it on a complex ten-class 3D gesture recognition task.Comment: European Symposium on artificial neural networks (ESANN), Apr 2015, Bruges, Belgium. 201

    Joint stereo-PIV and NO-LIF in turbulent premixed hydrogen-air flames

    Get PDF
    A new technique to simultaneously and instantaneously resolve 3D velocity/2D strain rate fields and scalar/scalar gradient fields was developed and evaluated in this study. This technique combines Planar Laser Induced Fluorescence of the NO radical (NO-PLIF) and Stereoscopic Particle Image Velocimetry (SPIV). It was found that the NO-PLIF technique allowed the determination of various iso-c contours and as such would, in principle, allow the study of the influence of the heat release on various properties, provided a calibration of the NO-PLIF signal as a function of temperature is achieved. It was also shown that the NO-PLIF technique may not be unambiguous at detecting flame extinction. The SPIV technique allowed the determination of the velocities in 3D and of the strain rates in 2D from which the most extensive and the most compressive strain rates but not the intermediate strain rate could be extracted. Information on strain rates and progress variable gradients were of particular interest in this study as they were needed to study the turbulence-scalar interaction which appears explicitly in the transport equation for the scalar dissipation rate which was derived recently. Using the technique above mentioned, this work also aimed at gathering and analysing data such as flame normal orientation, progress variable gradients, velocity change across the flame front and strain rates along the flame contours in turbulent premixed hydrogen/air flames with added nitrogen. The flame normal orientation was found to be consistent with the regime of the flames studied. A new method was designed and presented to infer from the progress variable gradients the component of the flame normal in the third dimension. The velocity change across the flame front, inferred from the SPIV data, was found to be extremely small. It is thought that the (low) heat release of the flames studied contributed more to corrugation of the flame front than acceleration of the gases across the flame front. The strain rates were studied along apparently non-wrinkled and clearly wrinkled flame contours. Their variation could not successfully be linked to curvature solely. Their values were mostly below the value expected for extinction strain rates. Last, this study aimed at investigating the turbulence-scalar interactions in turbulent premixed hydrogen/air flames with added nitrogen via the characteristics of the alignment of the flame normal vectors with the principal strain rates. The results of this study are quite different from earlier experimental results obtained for turbulent premixed ethylene/air flames. The strong preferential alignment of the flame front normal with the most extensive strain rate observed for ethylene/air flames could not be observed for the hydrogen/air flames with added nitrogen studied in the present work. The key outcome of this study was that no preferential alignment could be observed for most of the flames. A slight preferential alignment of the flame front normal with the most compressive strain rate was observed for the flames with very low adiabatic flame temperature. The differences observed were attributed partly to Lewis number effects and partly to the low heat release superimposed on the hydrodynamic fields in the flames studied

    Environmental changes and radioactive tracers

    Get PDF

    Climate variability along latitudinal and longitudinal transects in East Antarctica

    Get PDF
    AbstractIn the framework of the International Trans-Antarctic Scientific Expedition (ITASE) programme, France and Italy carried out a traverse along one west–east and two north–south transects in East Antarctica from November 2001 to January 2002. Eighteen shallow snow–firn cores were drilled, and surface snow samples were collected every 5km along the traverse. Firn temperatures were measured in boreholes down to 30 m. The cores were analyzed for β radioactivity to obtain snow accumulation-rate data. The surface snow samples were analyzed for δ18O to correlate isotopic values with borehole temperatures. Multiple regression analysis shows a global near-dry-adiabatic lapse rate and a latitudinal lapse rate of 1.05˚C(˚ lat. S)–1, in the Dome C drainage area. Analysis of firn temperatures reveals a super-adiabatic lapse rate along the ice divide between Talos Dome and the Southern Ocean coast, and in some sectors along the ice divide between the Astrolabe Basin and D59. Snow accumulation rates and firn temperatures show warmer temperatures and higher accumulation values close to the ice divides extending from Talos Dome and Dome C to the Southern Ocean. The spatial pattern of data is linked with a katabatic-wind-source basin and moisture-source region

    Spatial distribution of biogenic sulphur compounds (MSA, nssSO4 2- ) in the northern Victoria Land-Dome C-Wilkes Land area, East Antarctica

    Get PDF
    AbstractDuring the 1992–2002 Antarctic expeditions, in the framework of the International Trans-Antarctic Expedition (ITASE) project, about 600 sites were sampled (superficial snow, snow pits and firn cores) along traverses in the northern Victoria Land–Dome C–Wilkes Land region. The sites were characterized by different geographical (distance from the sea, altitude) and climatological (annual mean accumulation rate, temperature) conditions and were affected by air masses from different marine sectors (Ross Sea, Pacific Ocean). Mean anion and cation contents were calculated at each site, in order to evaluate the spatial distribution of chemical impurities in snow. Here we discuss the distribution of non-sea-salt sulphate (nssSO42–) and of methanesulphonic acid (MSA) mainly originating from atmospheric oxidation of biogenic dimethyl sulphide; these compounds play a key role in climate control processes by acting as cloud condensation nuclei. The spatial distribution of nssSO42– and MSA is discussed as a function of distance from the sea, altitude and accumulation rate. Depositional fluxes of nssSO42– and MSA decrease as a function of distance from the sea, with a higher gradient in the first 200km step. There is an analogous trend with the site altitude, and the first 1600m step is relevant in determining the nssSO42– and MSA content in snow. The nssSO42–/MSA ratio depends on the distance from the sea and the biogenic source strength. At coastal sites, where biogenic inputs are dominant, this ratio is ~2. As biogenic input decreases (low MSA content) inland, the ratio increases, indicating the presence of alternative sources of nssSO42– (crustal, volcanic background) or advection of low-latitude air masses. By plotting total flux as a function of accumulation rate, dry depositional contributions were evaluated for nssSO42– and MSA in the Ross Sea and Pacific Ocean sectors. Non-sea-salt sulphate wet deposition prevails at sites where the accumulation rate (expressed as water equivalent) is higher than 70 kgm–2 a–1 (Ross Sea sector) or 370 kgm–2 a–1 (Pacific Ocean sector). MSA threshold values in these sectors are respectively 90 and 220 kgm–2 a–1

    Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses

    Get PDF
    AbstractSea-salt markers (Na+, Mg2+ and Cl–) were analyzed in recent snow collected at more than 600 sites located in coastal and central areas of East Antarctica (northern Victoria Land–Dome C–Wilkes Land), in order to understand the effect of site remoteness, transport efficiency and depositional and post-depositional processes on the spatial distribution of the primary marine aerosol. Firn-core, snow-pit and 1m integrated superficial snow samples were collected in the framework of the International Trans-Antarctic Scientific Expeditions (ITASE) project during recent Italian Antarctic Campaigns (1992–2002). The sampling sites were mainly distributed along coast–inland traverses (northern Victoria Land– Dome C) and an east–west transect following the 2100m contour line (Wilkes Land). At each site, the snow ionic composition was determined. Here, we discuss the distribution of sea-spray components (Na+, Mg2+ and Cl–) as a function of distance from the sea, altitude and accumulation rate, in order to discover the pulling-down rate, possible fractionating phenomena and alternative sources moving inland from coastal areas. Sea-spray depositional fluxes decrease as a function of distance from the sea and altitude. A two-order-of-magnitude decrease occurs in the first 200km from the sea, corresponding to about 2000ma.s.l. Correlations of Mg2+ and Cl– with Na+ and trends of Mg2+/Na+ and Cl–/Na+ ratios showed that chloride has other sources than sea spray (HCl) and is affected by post-depositional processes. Accumulation rate higher than 80 kgm–2 a–1 preserves the chloride record in the snow. Sea-spray atmospheric scavenging is dominated by wet deposition in coastal and inland sites

    Joint stereo-PIV and NO-LIF in turbulent premixed hydrogen-air flames

    Get PDF
    A new technique to simultaneously and instantaneously resolve 3D velocity/2D strain rate fields and scalar/scalar gradient fields was developed and evaluated in this study. This technique combines Planar Laser Induced Fluorescence of the NO radical (NO-PLIF) and Stereoscopic Particle Image Velocimetry (SPIV). It was found that the NO-PLIF technique allowed the determination of various iso-c contours and as such would, in principle, allow the study of the influence of the heat release on various properties, provided a calibration of the NO-PLIF signal as a function of temperature is achieved. It was also shown that the NO-PLIF technique may not be unambiguous at detecting flame extinction. The SPIV technique allowed the determination of the velocities in 3D and of the strain rates in 2D from which the most extensive and the most compressive strain rates but not the intermediate strain rate could be extracted. Information on strain rates and progress variable gradients were of particular interest in this study as they were needed to study the turbulence-scalar interaction which appears explicitly in the transport equation for the scalar dissipation rate which was derived recently. Using the technique above mentioned, this work also aimed at gathering and analysing data such as flame normal orientation, progress variable gradients, velocity change across the flame front and strain rates along the flame contours in turbulent premixed hydrogen/air flames with added nitrogen. The flame normal orientation was found to be consistent with the regime of the flames studied. A new method was designed and presented to infer from the progress variable gradients the component of the flame normal in the third dimension. The velocity change across the flame front, inferred from the SPIV data, was found to be extremely small. It is thought that the (low) heat release of the flames studied contributed more to corrugation of the flame front than acceleration of the gases across the flame front. The strain rates were studied along apparently non-wrinkled and clearly wrinkled flame contours. Their variation could not successfully be linked to curvature solely. Their values were mostly below the value expected for extinction strain rates. Last, this study aimed at investigating the turbulence-scalar interactions in turbulent premixed hydrogen/air flames with added nitrogen via the characteristics of the alignment of the flame normal vectors with the principal strain rates. The results of this study are quite different from earlier experimental results obtained for turbulent premixed ethylene/air flames. The strong preferential alignment of the flame front normal with the most extensive strain rate observed for ethylene/air flames could not be observed for the hydrogen/air flames with added nitrogen studied in the present work. The key outcome of this study was that no preferential alignment could be observed for most of the flames. A slight preferential alignment of the flame front normal with the most compressive strain rate was observed for the flames with very low adiabatic flame temperature. The differences observed were attributed partly to Lewis number effects and partly to the low heat release superimposed on the hydrodynamic fields in the flames studied.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis

    Get PDF
    Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth-age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr(-1) at DC to 20 mm w.e. yr(-1) at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr(-1) over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr(-1) (last 234 years) to 2 mm w.e. yr(-1) (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates

    North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France and possible relations with Mont-Blanc glaciers fluctuations

    Get PDF
    International audienceA 14-m long piston core was retrieved from Lake Le Bourget, NWAlps (France), in order to provide a continuous record of flooding events of the Rhone River during the Holocene. The selection of the coring site was based on high resolution seismic profiling, in an area with limited mass wasting deposits and accumulated proximal Rhone River inter-and underflow deposits. The age-depth model of this core is based on (i) 14 AMS radiocarbon dates, (ii)radionuclide dating(137Cs) and (iii) the identification of historical data (flood events, eutrophication of the lake).The sedimentary record dates back to 9400 cal BP, and includes a thin mass wasting event deposited around 4500 cal BP. A multi-proxy approach was used to track the evolution and origin of clastic sedimentation during the Holocene, in order to identify periods of higher hydrologic al activity in the catchment area. Spectrophotometry was used to detect fluctuations in clastic supply and the study of clay minerals (especially the Illite crystallinity index) allowed locating the main source area of fine grained clastic particles settling at the lake after flood events. This dataset highlights up to 12 periods of more intense flooding events over the last 9400 years in Lake Le Bourget and shows that the main source area of clastic particles during this period is the upper part of the Arve River drainage basin. This part of the catchment area drains several large glaciers from the Mont-Blanc Massif, and fluctuations in Rhone River flood supply in Lake Le Bourget is interpreted as resulting essentially from Mont-Blanc Glacier activity during the Holocene.The comparison of clastic sedimentationin Lake Le Bourget with periods of increasing land use and periods of Alpine glacier and mid-European lake level fluctuations, suggest that the core LDB04 clastic record in Lake Le Bourget is a continuous proxy of the Holocene hydrologic al history of the NW Alps
    • …
    corecore