80 research outputs found

    Distribution, Size, and Shape of Abdominal Aortic Calcified Deposits and Their Relationship to Mortality in Postmenopausal Women

    Get PDF
    Abdominal aortic calcifications (AACs) correlate strongly with coronary artery calcifications and can be predictors of cardiovascular mortality. We investigated whether size, shape, and distribution of AACs are related to mortality and how such prognostic markers perform compared to the state-of-the-art AC24 marker introduced by Kauppila. Methods. For 308 postmenopausal women, we quantified the number of AAC and the percentage of the abdominal aorta that the lesions occupied in terms of their area, simulated plaque area, thickness, wall coverage, and length. We analysed inter-/intraobserver reproducibility and predictive ability of mortality after 8-9 years via Cox regression leading to hazard ratios (HRs). Results. The coefficient of variation was below 25% for all markers. The strongest individual predictors were the number of calcifications (HR = 2.4) and the simulated area percentage (HR = 2.96) of a calcified plaque, and, unlike AC24 (HR = 1.66), they allowed mortality prediction also after adjusting for traditional risk factors. In a combined Cox regression model, the strongest complementary predictors were the number of calcifications (HR = 2.76) and the area percentage (HR = −3.84). Conclusion. Morphometric markers of AAC quantified from radiographs may be a useful tool for screening and monitoring risk of CVD mortality

    Distribution, size, shape, growth potential and extent of abdominal aortic calcified deposits predict mortality in postmenopausal women

    Get PDF
    Background: Aortic calcification is a major risk factor for death from cardiovascular disease. We investigated the relationship between mortality and the composite markers of number, size, morphology and distribution of calcified plaques in the lumbar aorta.Methods: 308 postmenopausal women aged 48-76 were followed for 8.3 ± 0.3 years, with deaths related to cardiovascular disease, cancer, or other causes being recorded. From lumbar X-rays at baseline the number (NCD), size, morphology and distribution of aortic calcification lesions were scored and combined into one Morphological Atherosclerotic Calcification Distribution (MACD) index. The hazard ratio for mortality was calculated for the MACD and for three other commonly used predictors: the EU SCORE card, the Framingham Coronary Heart Disease Risk Score (Framingham score), and the gold standard Aortic Calcification Severity score (AC24) developed from the Framingham Heart Study cohorts.Results: All four scoring systems showed increasing age, smoking, and raised triglyceride levels were the main predictors of mortality after adjustment for all other metabolic and physical parameters. The SCORE card and the Framingham score resulted in a mortality hazard ratio increase per standard deviation (HR/SD) of 1.8 (1.51-2.13) and 2.6 (1.87-3.71), respectively. Of the morphological x-ray based measures, NCD revealed a HR/SD >2 adjusted for SCORE/Framingham. The MACD index scoring the distribution, size, morphology and number of lesions revealed the best predictive power for identification of patients at risk of mortality, with a hazard ratio of 15.6 (p < 0.001) for the 10% at greatest risk of death.Conclusions: This study shows that it is not just the extent of aortic calcification that predicts risk of mortality, but also the distribution, shape and size of calcified lesions. The MACD index may provide a more sensitive predictor of mortality from aortic calcification than the commonly used AC24 and SCORE/Framingham point card systems

    An epigenetic clock for gestational age at birth based on blood methylation data

    Get PDF

    Transcriptome-wide association study of breast cancer risk by estrogen-receptor status

    Get PDF
    Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.Peer reviewe

    Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.

    Get PDF
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 × 10-8), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores
    corecore