106 research outputs found

    2008 Abstracts Collection -- IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

    Get PDF
    This volume contains the proceedings of the 28th international conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2008), organized under the auspices of the Indian Association for Research in Computing Science (IARCS)

    Aqua­bromidobis(dimethyl­glyoximato)cobalt(III)

    Get PDF
    In the title complex, [CoBr(C4H7N2O2)2(H2O)], a crystallo­graphic mirror plane bis­ects the mol­ecule, perpendicular to the glyoximate ligands. The geometry around the cobalt(III) atom is approximately octa­hedral with the four glyoximate N atoms forming the square base. A bromide ion and the O atom of a water mol­ecule occupy the remaining coordination sites. The N—Co—N bite angles are 82.18 (4) and 80.03 (16)°. The glyoximate moieties form strong intra­molecular O—H⋯O hydrogen bonds. The coordinated water mol­ecule forms an inter­molecular O—H⋯O hydrogen bond with a glyoximate O atom, thereby generating supra­molecular chains parallel to [010]

    Plasma chemokines CXCL10 and CXCL9 as potential diagnostic markers of drug-sensitive and drug-resistant tuberculosis

    Get PDF
    Tuberculosis (TB) diagnosis still remains to be a challenge with the currently used immune based diagnostic methods particularly Interferon Gamma Release Assay due to the sensitivity issues and their inability in differentiating stages of TB infection. Immune markers are valuable sources for understanding disease biology and are easily accessible. Chemokines, the stimulant, and the shaper of host immune responses are the vital hub for disease mediated dysregulation and their varied levels in TB disease are considered as an important marker to define the disease status. Hence, we wanted to examine the levels of chemokines among the individuals with drug-resistant, drug-sensitive, and latent TB compared to healthy individuals. Our results demonstrated that the differential levels of chemokines between the study groups and revealed that CXCL10 and CXCL9 as potential markers of drug-resistant and drug-sensitive TB with better stage discriminating abilities

    Differential Frequencies of Intermediate Monocyte Subsets Among Individuals Infected With Drug-Sensitive or Drug-Resistant Mycobacterium tuberculosis

    Get PDF
    The rampant increase in drug-resistant tuberculosis (TB) remains a major challenge not only for treatment management but also for diagnosis, as well as drug design and development. Drug-resistant mycobacteria affect the quality of life owing to the delayed diagnosis and require prolonged treatment with multiple and toxic drugs. The phenotypic modulations defining the immune status of an individual during tuberculosis are well established. The present study aims to explore the phenotypic changes of monocytes & dendritic cells (DC) as well as their subsets across the TB disease spectrum, from latency to drug-sensitive TB (DS-TB) and drug-resistant TB (DR-TB) using traditional immunophenotypic analysis and by uniform manifold approximation and projection (UMAP) analysis. Our results demonstrate changes in frequencies of monocytes (classical, CD14(++)CD16(-), intermediate, CD14(++)CD16(+) and non-classical, CD14(+/-)CD16(++)) and dendritic cells (DC) (HLA-DR(+)CD11c(+) myeloid DCs, cross-presenting HLA-DR(+)CD14(-)CD141(+) myeloid DCs and HLA-DR(+)CD14(-)CD16(-)CD11c(-)CD123(+) plasmacytoid DCs) together with elevated Monocyte to Lymphocyte ratios (MLR)/Neutrophil to Lymphocyte ratios (NLR) and alteration of cytokine levels between DS-TB and DR-TB groups. UMAP analysis revealed significant differential expression of CD14(+), CD16(+), CD86(+) and CD64(+) on monocytes and CD123(+) on DCs by the DR-TB group. Thus, our study reveals differential monocyte and DC subset frequencies among the various TB disease groups towards modulating the immune responses and will be helpful to understand the pathogenicity driven by Mycobacterium tuberculosis

    Effect of temperature and time delay in centrifugation on stability of select biomarkers of nutrition and non-communicable diseases in blood samples

    Get PDF
    Introduction: Preanalytical conditions are critical for blood sample integrity and poses challenge in surveys involving biochemical measurements. A cross sectional study was conducted to assess the stability of select biomarkers at conditions that mimic field situations in surveys. Material and methods: Blood from 420 volunteers was exposed to 2 – 8 °C, room temperature (RT), 22 – 30 °C and > 30 °C for 30 min, 6 hours, 12 hours and 24 hours prior to centrifugation. After different exposures, whole blood (N = 35) was used to assess stability of haemoglobin, HbA1c and erythrocyte folate; serum (N = 35) for assessing stability of ferritin, C-reactive protein (CRP), vitamins B12, A and D, zinc, soluble transferrin receptor (sTfR), total cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), tryglicerides, albumin, total protein and creatinine; and plasma (N = 35) was used for glucose. The mean % deviation of the analytes was compared with the total change limit (TCL), computed from analytical and intra-individual imprecision. Values that were within the TCL were deemed to be stable. Result: Creatinine (mean % deviation 14.6, TCL 5.9), haemoglobin (16.4%, TCL 4.4) and folate (33.6%, TCL 22.6) were unstable after 12 hours at 22- 30°C, a temperature at which other analytes were stable. Creatinine was unstable even at RT for 12 hours (mean % deviation: 10.4). Albumin, CRP, glucose, cholesterol, LDL, triglycerides, vitamins B12 and A, sTfR and HbA1c were stable at all studied conditions. Conclusion: All analytes other than creatinine, folate and haemoglobin can be reliably estimated in blood samples exposed to 22-30°C for 12 hours in community-based studies

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore