3,947 research outputs found
Growing dust grains in protoplanetary discs - III. vertical settling
TM acknowledges the support of a Swinburne Special Studies Programme. GL is grateful to the Australian Research Council for funding via Discovery project grant DP1094585, and acknowledges funding from the European Research Council for the FP7 ERC advanced grant project ECOGAL. JFG's research was conducted within the Lyon Institute of Origins under grant ANR-10-LABX-66.We aim to derive a simple analytic model to understand the essential properties of vertically settling growing dust grains in laminar protoplanetary discs. Separating the vertical dynamics from the motion in the disc mid-plane, we integrate the equations of motion for both a linear and an exponential grain growth rate. Numerical integrations are performed for more complex growth models. We find that the settling efficiency depends on the value of the dimensionless parameter γ , which characterizes the relative efficiency of grain growth with respect to the gas drag. Since γ is expected to be of the same order as the initial dust-to-gas ratio in the disc (≃10−2), grain growth enhances the energy dissipation of the dust particles and improves the settling efficiency in protoplanetary discs. This behaviour is mostly independent of the growth model considered as well as of the radial drift of the particles.Publisher PDFPeer reviewe
Does sleep education change sleep parameters? Comparing sleep education trials for middle school students in Australia and New Zealand
Background: Adolescents suffer daytime consequences from sleep loss. Sleep education programs have been developed in an attempt to increase sleep knowledge and/or duration. This paper presents data from three trials of the Aus-tralian Centre for Education in Sleep (ACES) program for adolescents.Methods: The ACES program was delivered to 69 Australian adolescents in a pre-post cross-sectional design (mean age 15.2) and 29 New Zealand adolescents in a randomised control trial (mean age 14.8 years). Assessments in sleep parame-ters were undertaken at baseline and post intervention.Results: Where sleep knowledge was evaluated (Australian trials), significant improvements were shown in all trials (All p <0.05). Where sleep duration was assessed (New Zealand trial) significant improvements were found in week and weekend sleep duration [F(1, 27)=4.26, p=0.04). Both, students and teachers found the program feasible, interesting, and educational.Conclusions: ACES sleep education programmes can improve both sleep knowledge and sleep duration in adolescents. Improving the programme so sleep knowledge attained equates to actual sleep behaviour change are areas for future direc-tion. Collectively these findings provide encouraging signs that adolescents can improve their sleep knowledge and behav-iour with sleep education which bodes well for sleep-related health and psycho-social issues
The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation
13 pages, 4 figures.International audienceWe model the dust evolution in protoplanetary disks with full 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the two accumulation zones around planet gaps is strongly affected by fragmentation. We discuss the consequences for ALMA observations
The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation
13 pages, 4 figures.International audienceWe model the dust evolution in protoplanetary disks with full 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the two accumulation zones around planet gaps is strongly affected by fragmentation. We discuss the consequences for ALMA observations
Ovine recombinant PrP as an inhibitor of ruminant prion propagation in vitro
Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system Protein Misfolding Cyclic Amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases
The UK myotonic dystrophy patient registry: facilitating and accelerating clinical research
Myotonic dystrophy type 1 (DM1) is the most frequent muscular dystrophy worldwide with complex, multi-systemic, and progressively worsening symptoms. There is currently no treatment for this inherited disorder and research can be challenging due to the rarity and variability of the disease. The UK Myotonic Dystrophy Patient Registry is a patient self-enrolling online database collecting clinical and genetic information. For this cross-sectional “snapshot” analysis, 556 patients with a confirmed diagnosis of DM1 registered between May 2012 and July 2016 were included. An almost even distribution was seen between genders and a broad range of ages was present from 8 months to 78 years, with the largest proportion between 30 and 59 years. The two most frequent symptoms were fatigue and myotonia, reported by 79 and 78% of patients, respectively. The severity of myotonia correlated with the severity of fatigue as well as mobility impairment, and dysphagia occurred mostly in patients also reporting myotonia. Men reported significantly more frequent severe myotonia, whereas severe fatigue was more frequently reported by women. Cardiac abnormalities were diagnosed in 48% of patients and more than one-third of them needed a cardiac implant. Fifteen percent of patients used a non-invasive ventilation and cataracts were removed in 26% of patients, 65% of which before the age of 50 years. The registry’s primary aim was to facilitate and accelerate clinical research. However, these data also allow us to formulate questions for hypothesis-driven research that may lead to improvements in care and treatment
Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae, Agelenidae)
The relationships between the three members of the Tegenaria atrica group (T. atrica, T. saeva and T. gigantea) were examined with DNA sequence data from mitochondrial CO1, 16S rRNA, tRNAleu(CUN) and ND1 genes. Members of this group of large house spiders have overlapping distributions in western Europe and hybridize with each other to a variable degree. The close relatedness of all three species was supported by all analyses. T. saeva and T. gigantea are more closely affiliated than either is to T. atrica. Haplotypes clearly assignable to T. gigantea were also present in many specimens of T. saeva suggesting asymmetrical introgression of mtDNA from T. gigantea into T. saeva. Molecular clock calibrations (CO1) suggest that deeper divisions within the genus Tegenaria may be in excess of 10 million years old, and that the evolutionary history of the T. atrica group has been moulded by Quaternary glacial-interglacial cycles
Global phylogeography and evolution of chelonid fibropapilloma-associated herpesvirus
A global phylogeny for chelonid fibropapilloma-associated herpesvirus (CFPHV), the most likely aetiological agent of fibropapillomatosis (FP) in sea turtles, was inferred, using dated sequences, through Bayesian Markov chain Monte Carlo analysis and used to estimate the virus evolutionary rate independent of the evolution of the host, and to resolve the phylogenetic positions of new haplotypes from Puerto Rico and the Gulf of Guinea. Four phylogeographical groups were identified: eastern Pacific, western Atlantic/eastern Caribbean, mid-west Pacific and Atlantic. The latter comprises the Gulf of Guinea and Puerto Rico, suggesting recent virus gene flow between these two regions. One virus haplotype from Florida remained elusive, representing either an independent lineage sharing a common ancestor with all other identified virus variants or an Atlantic representative of the lineage giving rise to the eastern Pacific group. The virus evolutionary rate ranged from 1.62x10(-4) to 2.22x10(-4) substitutions per site per year, which is much faster than what is expected for a herpesvirus. The mean time for the most recent common ancestor of the modern virus variants was estimated at 192.90-429.71 years ago, which, although more recent than previous estimates, still supports an interpretation that the global FP pandemic is not the result of a recent acquisition of a virulence mutation(s). The phylogeographical pattern obtained seems partially to reflect sea turtle movements, whereas altered environments appear to be implicated in current FP outbreaks and in the modern evolutionary history of CFPHV.DNER-PR; US NMFS (NMFS-NOAA) [NA08NMF4720436]; US-Fish and Wildlife Service (USFWS); Sociedad Chelonia; WIDECAST; US Environmental Protection Agency (US-EPA); Lisbon Oceanarium, Portugal; Interdisciplinary Research Center for Animal Health of the Faculty of Veterinary Medicine of the Technical University of Lisbon (FMV/TUL)info:eu-repo/semantics/publishedVersio
An approach to the Riemann problem in the light of a reformulation of the state equation for SPH inviscid ideal flows: a highlight on spiral hydrodynamics in accretion discs
In physically inviscid fluid dynamics, "shock capturing" methods adopt either
an artificial viscosity contribution or an appropriate Riemann solver
algorithm. These techniques are necessary to solve the strictly hyperbolic
Euler equations if flow discontinuities (the Riemann problem) are to be solved.
A necessary dissipation is normally used in such cases. An explicit artificial
viscosity contribution is normally adopted to smooth out spurious heating and
to treat transport phenomena. Such a treatment of inviscid flows is also widely
adopted in the Smooth Particle Hydrodynamics (SPH) finite volume free
Lagrangian scheme. In other cases, the intrinsic dissipation of Godunov-type
methods is implicitly useful. Instead "shock tracking" methods normally use the
Rankine-Hugoniot jump conditions to solve such problems. A simple, effective
solution of the Riemann problem in inviscid ideal gases is here proposed, based
on an empirical reformulation of the equation of state (EoS) in the Euler
equations in fluid dynamics, whose limit for a motionless gas coincides with
the classical EoS of ideal gases. The application of such an effective solution
to the Riemann problem excludes any dependence, in the transport phenomena, on
particle smoothing resolution length in non viscous SPH flows. Results on
1D shock tube tests, as well as examples of application for 2D turbulence and
2D shear flows are here shown. As an astrophysical application, a much better
identification of spiral structures in accretion discs in a close binary (CB),
as a result of this reformulation is also shown here.Comment: 19 pages, 17 figure
- …
