354 research outputs found

    RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Full text link
    We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration we use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. We have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO we have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. We examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. We show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. We have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which we show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.Comment: ApJS in press, 21 pages including 18 figures (6 color figures

    A Systematic Search for Corotating Interaction Regions in Apparently Single Galactic WR Stars. I. Characterizing the Variability

    Full text link
    We present the results of a systematic search for large-scale spectroscopic variability in apparently single Wolf-Rayet stars brighter than ~12.5. In this first paper we characterize the various forms of variability detected and distinguish several separate groups. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio ~100. Our ultimate goal is to identify new candidates presenting variability that potentially comes from Co-rotating Interaction Regions (CIR). Out of a sample of 25 stars, 10 were found to display large-scale changes of which 4 are of CIR-type (WR1, WR115, WR120 and WR134). The star WR134 was already known to show such changes from previous studies. Three WN8 stars present a different type of large-scale variability and we believe deserve a group of their own. Also, all three WC9d stars in our sample present large-scale variability, but it remains to be checked if these are binaries, as many dust-making WR stars are double. Finally, of the remaining stars, 10 were found to show small-amplitude spectral changes which we attribute to normal line-profile variability due to inhomogeneities in the wind, and 5 were found to show no spectral variability, as far as can be concluded from the data in hand. Follow-up studies are required to identify potential periods for our candidates showing CIR-type changes and eventually estimate a rotation rate for these WR stars.Comment: 25 pages, 13 figure

    Flavor conversion of cosmic neutrinos from hidden jets

    Full text link
    High energy cosmic neutrino fluxes can be produced inside relativistic jets under the envelopes of collapsing stars. In the energy range E ~ (0.3 - 1e5) GeV, flavor conversion of these neutrinos is modified by various matter effects inside the star and the Earth. We present a comprehensive (both analytic and numerical) description of the flavor conversion of these neutrinos which includes: (i) oscillations inside jets, (ii) flavor-to-mass state transitions in an envelope, (iii) loss of coherence on the way to observer, and (iv) oscillations of the mass states inside the Earth. We show that conversion has several new features which are not realized in other objects, in particular interference effects ("L- and H- wiggles") induced by the adiabaticity violation. The neutrino-neutrino scattering inside jet and inelastic neutrino interactions in the envelope may produce some additional features at E > 1e4 GeV. We study dependence of the probabilities and flavor ratios in the matter-affected region on angles theta13 and theta23, on the CP-phase delta, as well as on the initial flavor content and density profile of the star. We show that measurements of the energy dependence of the flavor ratios will, in principle, allow to determine independently the neutrino and astrophysical parameters.Comment: 56 pages, 19 figures. Minor changes. Accepted by JHEP

    Neutrino Spectra from Accretion Disks: Neutrino General Relativistic Effects and the Consequences for Nucleosynthesis

    Full text link
    Black hole accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the black hole influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from black hole accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcomeComment: 18 pages, 17 figures, submitted to Ap

    Can a Large Neutron Excess Help Solve the Baryon Loading Problem in Gamma-Ray Burst Fireballs?

    Get PDF
    We point out that the baryon-loading problem in Gamma-Ray Burst (GRB) models can be amelioriated if a significant fraction of the baryons which inertially confine the fireball are converted to neutrons. A high neutron fraction in some circumstances can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. This could be relevant to GRB models because a high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.Comment: 5 pages, 2 figures, to appear in Phys. Rev. Let

    EM counterparts of recoiling black holes: general relativistic simulations of non-Keplerian discs

    Get PDF
    We investigate the dynamics of a circumbinary disc that responds to the loss of mass and to the recoil velocity of the black hole produced by the merger of a binary system of supermassive black holes. We perform the first two-dimensional general relativistic hydrodynamics simulations of \textit{extended} non-Keplerian discs and employ a new technique to construct a "shock detector", thus determining the precise location of the shocks produced in the accreting disc by the recoiling black hole. In this way we can study how the properties of the system, such as the spin, mass and recoil velocity of the black hole, affect the mass accretion rate and are imprinted on the electromagnetic emission from these sources. We argue that the estimates of the bremsstrahlung luminosity computed without properly taking into account the radiation transfer yield cooling times that are unrealistically short. At the same time we show, through an approximation based on the relativistic isothermal evolution, that the luminosity produced can reach a peak value above L1043 erg/sL \simeq 10^{43} \ {\rm erg/s} at about 30d\sim 30\,{\rm d} after the merger of a binary with total mass M106MM\simeq 10^6 M_\odot and persist for several days at values which are a factor of a few smaller. If confirmed by more sophisticated calculations such a signal could indeed lead to an electromagnetic counterpart of the merger of binary black-hole system.Comment: 17 pages, 11 figures, accepted by A&A, movies available at http://numrel.aei.mpg.de/Visualisations/Archive/BinaryBlackHoles/EMCounterparts/EMCounterparts.htm

    Gamma Ray Bursts as Probes of Quantum Gravity

    Full text link
    Gamma ray bursts (GRBs) are short and intense pulses of γ\gamma-rays arriving from random directions in the sky. Several years ago Amelino-Camelia et al. pointed out that a comparison of time of arrival of photons at different energies from a GRB could be used to measure (or obtain a limit on) possible deviations from a constant speed of light at high photons energies. I review here our current understanding of GRBs and reconsider the possibility of performing these observations.Comment: Lectures given at the 40th winter school of theretical physics: Quantum Gravity and Phenomenology, Feb. 2004 Polan

    The electromagnetic model of Gamma Ray Bursts

    Full text link
    I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.Comment: solicited contribution to Focus Issue of New Journal of Physics, 27 pages, 4 figure

    A multi-colour study of the dark GRB 000210 host galaxy and its environment

    Get PDF
    We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates have been fitted to the Spectral Energy Distribution (SED) of the host. The derived photometric redshift is z=0.842^+0.054_-0.042, which is in excellent agreement with the spectroscopic redshift (z=0.8463+/-0.0002) proposed by Piro et al. (2002) based on a single emission line. Furthermore, we have determined the photometric redshift of all the galaxies in an area of 6'x6' around the host galaxy, in order to check for their overdensity in the environment of the host. We find that the GRB 000210 host galaxy is a subluminous galaxy (L ~ 0.5+/-0.2 L*), with no companions above our detection threshold of 0.18+/-0.06 L*. Based on the restframe ultraviolet flux a star formation rate of 2.1+/-0.2 Solar Masses per year is estimated. The best fit to the SED is obtained for a starburst template with an age of 0.181^+0.037_-0.026 Gyr and a very low extinction (Av~0). We discuss the implications of the inferred low value of Av and the age of the dominant stellar population for the non detection of the GRB 000210 optical afterglow.Comment: 10 pages with 4 encapsulated PostScript figures included. Accepted for publication in Astronomy & Astrophysic

    A Relativistic Type Ibc Supernova Without a Detected Gamma-ray Burst

    Full text link
    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of Type Ibc supernovae (SNe Ibc). They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. To date, central engine-driven SNe have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected due to limited satellite sensitivity or beaming of the collimated emission away from our line-of-sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for SNe Ibc with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary Type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. The lack of a coincident GRB makes SN 2009bb the first engine-driven SN discovered without a detected gamma-ray signal. A comparison with our extensive radio survey of SNe Ibc reveals that the fraction harboring central engines is low, ~1 percent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Our study demonstrates that upcoming optical and radio surveys will soon rival gamma-ray satellites in pinpointing the nearest engine-driven SNe. A similar result for a different supernova is reported independently.Comment: To appear in Nature on Jan 28 2010. Embargoed for discussion in the press until 13:00 US Eastern Time on Jan 27 (Accepted version, 27 pages, Manuscript and Suppl. Info.
    corecore