Abstract

We point out that the baryon-loading problem in Gamma-Ray Burst (GRB) models can be amelioriated if a significant fraction of the baryons which inertially confine the fireball are converted to neutrons. A high neutron fraction in some circumstances can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. This could be relevant to GRB models because a high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.Comment: 5 pages, 2 figures, to appear in Phys. Rev. Let

    Similar works