376 research outputs found

    The Impact of Personality Type on Co-Teaching Pairs

    Get PDF
    Co-teaching is a commonly used instructional model allowing students with disabilities access to the general education curriculum with their general education peers. General education and special education teachers instruct together, and the relationship between the two teachers is paramount to the team\u27s success. When a co-teaching team is successful, all students benefit from the partnership. Administrators who take time to match teachers together based on personalities and learning preferences can increase the chances of success in an inclusive classroom. Unfortunately, relatively little research linking personality compatibility with effective co-teaching and relating personality similarities of the co-teachers to student engagement, student achievement, teacher planning, or teacher job satisfaction is available. The purpose of the study is to understand how personality may impact co-teaching relationships. The methodology is mixed methods. The quantitative data collected included Likert scale surveys and a personality type online survey to determine personality types. The qualitative data included focus group discussions, interviews, and classroom observations. The qualitative data collected occurred virtually as this study occurred during the COVID-19 pandemic, and the schools were closed to in-person learning. The results of the study indicate personality types do impact the co-teaching relationship. Co-teachers with similar personality types report planning together weekly, increased job satisfaction, high student engagement, and increased student achievement

    Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy

    Get PDF
    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 mu M). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (445 mu M) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater

    Sulfur isotope values in the sulfidic Frasassi cave system, central Italy : a case study of a chemolithotrophic S-based ecosystem

    Get PDF
    This work was supported by NASA Exobiology (NNX07AV54G) (A.Z. and J.F.), a Natural Environment Research Council Fellowship (NE/H016805) (A.Z.), the National Science Foundation (NSF EAR-0525503 and EAR-1124411) (J.M.), and the NASA Astrobiology Institute (PSARC, NNA04CC06A) (J.M.).Sulfide oxidation forms a critical step in the global sulfur cycle, although this process is notoriously difficult to constrain due to the multiple pathways and highly reactive intermediates involved. Multiple sulfur isotopes (δ34S and Δ33S) can provide a powerful tool for unravelling sulfur cycling processes in modern (and ancient) environments, although they have had limited application to systems with well-resolved oxidative S cycling. In this study, we report the major (δ34S) and minor (Δ33S) isotope values of sulfur compounds in streams and sediments from the sulfidic Frasassi cave system, Marche Region, Italy. These microaerophilic cave streams host prominent white biofilms dominated by chemolithotrophic organisms that oxidize sulfide to S0, allowing us to estimate S isotope fractionations associated with in situ sulfide oxidation and to evaluate any resulting isotope biosignatures. Our results demonstrate that chemolithotrophic sulfide oxidation produces 34S enrichments in the S0 products that are larger than those previously measured in laboratory experiments, with 34ɛS0-H2S of up to 8‰ calculated. These small reverse isotope effects are similar to those produced during phototrophic sulfide oxidation (≤ 7‰), but distinct from the small normal isotope effects previously calculated for abiotic oxidation of sulfide with O2 (~-5‰). An inverse correlation between the magnitude of 34ɛS0-H2S effects and sulfide availability, along with substantial differences in Δ33S, both support complex sulfide oxidation pathways and intracellular recycling of S intermediates by organisms inhabiting the biofilms. At the ecosystem level, we calculate fractionations of less than 40‰ between sulfide and sulfate in the water column and in the sediments. These fractionations are smaller than those typically calculated for systems dominated by sulfate reduction (> 50‰), and contrast with the commonly held assumption that oxidative recycling of sulfide generally increases overall fractionations. The relatively small fractionations appear to be related to the sequestration of S0 in the biofilms (either intra- or extra-cellularly), which removes this intermediate substrate from fractionation by further disproportionation or oxidation reactions. In addition, the net 33λH2S-SO4 values calculated in this system are larger than data published for systems dominated by reductive sulfur cycling, partially due to the isotopic imprint of chemolithotrophic sulfide oxidation on the aqueous sulfide pool. These distinct isotopic relationships are retained in the sedimentary sulfur pool, suggesting that trends in 34S and 33S isotope values could provide an isotopic fingerprint of such chemolithotrophic ecosystems in modern and ancient environments.PostprintPeer reviewe

    Acid mine drainage: streambed sorption of copper, cadmium and zinc

    Get PDF
    January 10, 1990.Includes bibliographical references.Grant no. 14-08-0001-1551, Project no. 04; financed in part by the U.S. Department of the Interior, Geological Survey, through the Colorado Water Resources Research Institute

    Sulfur disproportionating microbial communities in a dynamic, microoxic‐sulfidic karst system

    Get PDF
    Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S0 in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%–26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0 disproportionation in pure culture. Gibbs energy (∆Gr) calculations revealed that S0 disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0 generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments

    Adsorção de atrazina, desetilatrazina e hidroxiatrazina em latossolo vermelho escuro sob cerrado e sob plantio direto no Distrito Federal

    Get PDF
    The environmental fate of a pesticide depends on many factors, among them the soil characteristics as mineralogy, soil chemistry and organic matter content. This study aims to verify how the adaptation of chemical and mineralogical properties of a dark red latosol from the Brazilian savanna under the continuous use of no till practice can affect its affinity to atrazine and two metabolites (deethylatrazine and hydroxyatrazine). Therefore, beyond the characterization of the cited parameters, batch studies were performed with both no till and native vegetation soils. The comparison between them showed that the changes in some soil properties due to agriculture use of it were enough to change significantly its affinity for the studied compounds. Atrazine and deethylatrazine showed significant affinity to the high organic matter content horizon, while deeper horizons with smaller amounts of organic matter atrazine sorption was neglectible, deethylatrazine was present, but in smaller amounts.        O destino de um agrotóxico no meio ambiente depende de vários fatores, entre estes as alguns atributos do solo como mineralogia, composição química e conteúdo de matéria orgânica. Este estudo teve como objetivos verificar de que forma a adaptação de algumas das características de um Latossolo Vermelho Escuro do cerrado ao uso continuado do plantio direto (PD) influencia a retenção da atrazina e dois de seus principiais metabólitos (desetilatrazina e hidroxiatrazina). Desta forma, além da caracterização do solo, desenvolveram-se estudos da interação do solo com a atrazina, tanto com solos utilizados para PD, quanto solos de mata nativa nunca usados na prática agrícola. A comparação entre ambos evidenciou que as mudanças ocasionadas pelo solo agrícola, embora pequenas, foram suficientes para causar ligeira modificação na afinidade deste pelos compostos estudados. Atrazina e desetilatrazina apresentaram maior afinidade com os horizontes mais ricos em matéria orgânica, enquanto que os horizontes mais profundos, mais pobres em matéria orgânica, a adsorção da atrazina foi desprazível, desetilatrazina esta presente, porém em quantidades pequenas

    Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation

    Get PDF
    Vulnerability to climate change, and particularly to climate extreme events, is expected to vary across species ranges. Thus, we need tools to standardize the variability in regional climatic legacy and extreme climate across populations and species. Extreme climate events (e.g., droughts) can erode populations close to the limits of species' climatic tolerance. Populations in climatic-core locations may also become vulnerable because they have developed a greater demand for resources (i.e., water) that cannot be enough satisfied during the periods of scarcity. These mechanisms can become exacerbated in tree populations when combined with antagonistic biotic interactions, such as insect infestation. We used climatic suitability indices derived from Species Distribution Models (SDMs) to standardize the climatic conditions experienced across Pinus edulis populations in southwestern North America, during a historical period (1972-2000) and during an extreme event (2001-2007), when the compound effect of hot drought and bark beetle infestation caused widespread die-off and mortality. Pinus edulis climatic suitability diminished dramatically during the die-off period, with remarkable variation between years. P. edulis die-off occurred mainly not just in sites that experienced lower climatic suitability during the drought but also where climatic suitability was higher during the historical period. The combined effect of historically high climatic suitability and a marked decrease in the climatic suitability during the drought best explained the range-wide mortality. Lagged effects of climatic suitability loss in previous years and co-occurrence of Juniperus monosperma also explained P. edulis die-off in particular years. Overall, the study shows that past climatic legacy, likely determining acclimation, together with competitive interactions plays a major role in responses to extreme drought. It also provides a new approach to standardize the magnitude of climatic variability across populations using SDMs, improving our capacity to predict population's or species' vulnerability to climatic change

    Microbial CO<sub>2</sub> fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S)

    Get PDF
    Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane (∼2.6 μM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field

    Causes and Implications of Extreme Atmospheric Moisture Demand during the Record-Breaking 2011 Wildfire Season in the Southwestern United States

    Get PDF
    In 2011, exceptionally low atmospheric moisture content combined with moderately high temperatures to produce a record-high vapor pressure deficit (VPD) in the southwestern United States (SW). These conditions combined with record-low cold-season precipitation to cause widespread drought and extreme wildfires. Although interannual VPD variability is generally dominated by temperature, high VPD in 2011 was also driven by a lack of atmospheric moisture. The May–July 2011 dewpoint in the SW was 4.5 standard deviations below the long-term mean. Lack of atmospheric moisture was promoted by already very dry soils and amplified by a strong ocean-to-continent sea level pressure gradient and upper-level convergence that drove dry northerly winds and subsidence upwind of and over the SW. Subsidence drove divergence of rapid and dry surface winds over the SW, suppressing southerly moisture imports and removing moisture from already dry soils. Model projections developed for the fifth phase of the Coupled Model Intercomparison Project (CMIP5) suggest that by the 2050s warming trends will cause mean warm-season VPD to be comparable to the record-high VPD observed in 2011. CMIP5 projections also suggest increased interannual variability of VPD, independent of trends in background mean levels, as a result of increased variability of dewpoint, temperature, vapor pressure, and saturation vapor pressure. Increased variability in VPD translates to increased probability of 2011-type VPD anomalies, which would be superimposed on ever-greater background VPD levels. Although temperature will continue to be the primary driver of interannual VPD variability, 2011 served as an important reminder that atmospheric moisture content can also drive impactful VPD anomalies
    corecore