443 research outputs found
Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy
We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 mu M). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (445 mu M) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater
Sulfur isotope values in the sulfidic Frasassi cave system, central Italy : a case study of a chemolithotrophic S-based ecosystem
This work was supported by NASA Exobiology (NNX07AV54G) (A.Z. and J.F.), a Natural Environment Research Council Fellowship (NE/H016805) (A.Z.), the National Science Foundation (NSF EAR-0525503 and EAR-1124411) (J.M.), and the NASA Astrobiology Institute (PSARC, NNA04CC06A) (J.M.).Sulfide oxidation forms a critical step in the global sulfur cycle, although this process is notoriously difficult to constrain due to the multiple pathways and highly reactive intermediates involved. Multiple sulfur isotopes (δ34S and Δ33S) can provide a powerful tool for unravelling sulfur cycling processes in modern (and ancient) environments, although they have had limited application to systems with well-resolved oxidative S cycling. In this study, we report the major (δ34S) and minor (Δ33S) isotope values of sulfur compounds in streams and sediments from the sulfidic Frasassi cave system, Marche Region, Italy. These microaerophilic cave streams host prominent white biofilms dominated by chemolithotrophic organisms that oxidize sulfide to S0, allowing us to estimate S isotope fractionations associated with in situ sulfide oxidation and to evaluate any resulting isotope biosignatures. Our results demonstrate that chemolithotrophic sulfide oxidation produces 34S enrichments in the S0 products that are larger than those previously measured in laboratory experiments, with 34ɛS0-H2S of up to 8‰ calculated. These small reverse isotope effects are similar to those produced during phototrophic sulfide oxidation (≤ 7‰), but distinct from the small normal isotope effects previously calculated for abiotic oxidation of sulfide with O2 (~-5‰). An inverse correlation between the magnitude of 34ɛS0-H2S effects and sulfide availability, along with substantial differences in Δ33S, both support complex sulfide oxidation pathways and intracellular recycling of S intermediates by organisms inhabiting the biofilms. At the ecosystem level, we calculate fractionations of less than 40‰ between sulfide and sulfate in the water column and in the sediments. These fractionations are smaller than those typically calculated for systems dominated by sulfate reduction (> 50‰), and contrast with the commonly held assumption that oxidative recycling of sulfide generally increases overall fractionations. The relatively small fractionations appear to be related to the sequestration of S0 in the biofilms (either intra- or extra-cellularly), which removes this intermediate substrate from fractionation by further disproportionation or oxidation reactions. In addition, the net 33λH2S-SO4 values calculated in this system are larger than data published for systems dominated by reductive sulfur cycling, partially due to the isotopic imprint of chemolithotrophic sulfide oxidation on the aqueous sulfide pool. These distinct isotopic relationships are retained in the sedimentary sulfur pool, suggesting that trends in 34S and 33S isotope values could provide an isotopic fingerprint of such chemolithotrophic ecosystems in modern and ancient environments.PostprintPeer reviewe
The Impact of Personality Type on Co-Teaching Pairs
Co-teaching is a commonly used instructional model allowing students with disabilities access to the general education curriculum with their general education peers. General education and special education teachers instruct together, and the relationship between the two teachers is paramount to the team\u27s success. When a co-teaching team is successful, all students benefit from the partnership. Administrators who take time to match teachers together based on personalities and learning preferences can increase the chances of success in an inclusive classroom. Unfortunately, relatively little research linking personality compatibility with effective co-teaching and relating personality similarities of the co-teachers to student engagement, student achievement, teacher planning, or teacher job satisfaction is available. The purpose of the study is to understand how personality may impact co-teaching relationships. The methodology is mixed methods. The quantitative data collected included Likert scale surveys and a personality type online survey to determine personality types. The qualitative data included focus group discussions, interviews, and classroom observations. The qualitative data collected occurred virtually as this study occurred during the COVID-19 pandemic, and the schools were closed to in-person learning. The results of the study indicate personality types do impact the co-teaching relationship. Co-teachers with similar personality types report planning together weekly, increased job satisfaction, high student engagement, and increased student achievement
Microbial CO<sub>2</sub> fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S)
Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane (∼2.6 μM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field
Acid mine drainage: streambed sorption of copper, cadmium and zinc
January 10, 1990.Includes bibliographical references.Grant no. 14-08-0001-1551, Project no. 04; financed in part by the U.S. Department of the Interior, Geological Survey, through the Colorado Water Resources Research Institute
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
Towards a common methodology for developing logistic tree mortality models based on ring-width data
Tree mortality is a key process shaping forest dynamics. Thus, there is a growing need for indicators of the likelihood of tree death. During the last decades, an increasing number of tree-ring based studies have aimed to derive growth-mortality functions, mostly using logistic models. The results of these studies, however, are difficult to compare and synthesize due to the diversity of approaches used for the sampling strategy (number and characteristics of ‘alive’ and ‘death’ observations), the type of explanatory growth variables included (level, trend, etc.), and the length of the time-window (number of years preceding the alive/death observation) that maximized the discrimination ability of each growth variable.
Here, we assess the implications of key methodological decisions when developing tree-ring based growth-mortality relationships using logistic mixed-effects regression models. As examples we use published tree-ring datasets from Abies alba (13 different sites), Nothofagus dombeyi (one site) and Quercus petraea (one site). Our approach is based on a constant sampling size and aims at (1) assessing the dependency of growth-mortality relationships on the statistical sampling scheme used; (2) determining the type of explanatory growth variables that should be considered; and (3) identifying the best length of the time window used to calculate them.
The performance of tree-ring based mortality models was reasonably high for all three species (Area Under the receiving operator characteristics Curve: AUC > 0.7). Growth level variables were the most important predictors of mortality probability for two species (A. alba, N. dombeyi), while growth-trend variables need to be considered for Q. petraea. In addition, the length of the time window used to calculate each growth variable was highly uncertain and depended on the sampling scheme, as some growth-mortality relationships varied with tree age.
The present study accounts for the main sampling-related biases to determine reliable species-specific growth-mortality relationships. Our results highlight the importance of using a sampling strategy that is consistent with the research question. Moving towards a common methodology for developing reliable growth-mortality relationships is an important step towards improving our understanding of tree mortality across species and its representation in dynamic vegetation models
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
Sulfur disproportionating microbial communities in a dynamic, microoxic‐sulfidic karst system
Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S0 in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%–26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0 disproportionation in pure culture. Gibbs energy (∆Gr) calculations revealed that S0 disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0 generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments
- …
