140 research outputs found
Enhanced inflammasome activation and reduced sphingosine-1 phosphate S1P signalling in a respiratory mucoobstructive disease model
Background:Inflammasomes and sphingosine-1-phosphate (S1P) signalling are increasingly subject to intensive research in human diseases. We hypothesize that in respiratory muco-obstructive diseases, mucus obstruction enhances NLRP3 inflammasome activation and dysregulated S1P signalling. Methods:Lung tissues from mice overexpressing the beta-unit of the epithelial sodium channel (βENaC) and their littermate controls were examined by histology, immunofluorescence and confocal microscopy, followed by ImageJ quantitative analysis. Results:Lower airways in βENaC mice showed patchy patterns of mucus obstruction and neutrophil-dominant infiltrations. In contrast to a ubiquitous distribution of TNFα specks, significantly (p < 0.05) increased specks of bronchiolar NLRP3, IL-1β, and IgG in the βENaC mouse lungs were localized to the vicinity of mucus obstruction sites. Bright Spinster homologue 2 (SPNS2) at the epithelial apex and positive correlation with sphingosine kinase 1 (SPHK1) (R2 = 0.640; p < 0.001) supported the normal bronchial epithelium as an active generator of extracellular S1P. SPNS2 in βENaC mice was sharply reduced (38%, p < 0.05) and lost apical localization at sites of mucus obstruction. A significant (34%; p < 0.01) decrease in epithelial SPHK2 was also noted at mucus obstruction sites. Conclusion:These results support that mucus obstruction may enhance NLRP3 inflammasome activation and dysregulated S1P signaling
Interventional low-dose azithromycin attenuates cigarette smoke-induced emphysema and lung inflammation in mice
Cigarette smoke (CS)-induced emphysema is an important contributor to chronic obstructive pulmonary disease (COPD). We have shown the efficacy of azithromycin in reducing airway inflammation in COPD and in reducing exacerbations in severe asthma; however, the effects of long-term azithromycin on emphysema development have not been shown. We employed live animal imaging to monitor emphysema-like development and the effects of interventional azithromycin treatment in CS-exposed mice. BALB/c mice (female, 10 weeks; n = 10) were exposed to CS for 1 hr twice daily, 5 days/week, and for 12 weeks (CS). Half were cotreated with low-dose azithromycin during weeks 7-12 (CS + Azi; 0.2 mg kg-1 day-1 ). Microcomputed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired longitudinally. Histological examinations were performed post mortem (mean linear intercept (Lm) and leukocyte infiltration). CS increased median Lm (CS: 42.45 µm versus control: 34.7 µm; p = .0317), this was recovered in CS + Azi mice (33.03 µm). Average CT values were reduced in CS mice (CS: -399.5 Hounsfield units (HU) versus control: -384.9 HU; p = .0286) but not in CS + Azi mice (-377.3 HU). CT values negatively correlated with Lm (r = -.7972; p = .0029) and T2 -weighted MRI (r = -.6434; p = .0278). MRI also showed significant CS-induced inflammatory changes that were attenuated by azithromycin in the lungs, and positively correlated with Lm (r = .7622; p = .0055) and inflammatory foci counts (r = .6503; p = .0257). Monitoring of emphysema development is possible via micro-CT and MRI. Interventional azithromycin treatment in CS-exposed mice attenuated the development of pulmonary emphysema-like changes.Matthew G. Macowan, Hong Liu, Miranda Ween, Rhys Hamon, Hai B. Tran
Sandra Hodge ... et al
Organotypic sinonasal airway culture systems are predictive of the mucociliary phenotype produced by bronchial airway epithelial cells
Published online: 10 November 2022Differentiated air-liquid interface models are the current standard to assess the mucociliary phenotype using clinically-derived samples in a controlled environment. However, obtaining basal progenitor airway epithelial cells (AEC) from the lungs is invasive and resource-intensive. Hence, we applied a tissue engineering approach to generate organotypic sinonasal AEC (nAEC) epithelia to determine whether they are predictive of bronchial AEC (bAEC) models. Basal progenitor AEC were isolated from healthy participants using a cytological brushing method and differentiated into epithelia on transwells until the mucociliary phenotype was observed. Tissue architecture was assessed using H&E and alcian blue/Verhoeff-Van Gieson staining, immunofluorescence (for cilia via acetylated α-tubulin labelling) and scanning electron microscopy. Differentiation and the formation of tight-junctions were monitored over the culture period (day 1-32) by quantifying trans-epithelial electrical resistance. End point (day 32) tight junction protein expression was assessed using Western blot analysis of ZO-1, Occludin-1 and Claudin-1. Reverse transcription qPCR-array was used to assess immunomodulatory and autophagy-specific transcript profiles. All outcome measures were assessed using R-statistical software. Mucociliary architecture was comparable for nAEC and bAEC-derived cultures, e.g. cell density P = 0.55, epithelial height P = 0.88 and cilia abundance P = 0.41. Trans-epithelial electrical resistance measures were distinct from day 1-14, converged over days 16-32, and were statistically similar over the entire culture period (global P 0.05). Transcript analysis for inflammatory markers demonstrated significant variation between nAEC and bAEC epithelial cultures, and favoured increased abundance in the nAEC model (e.g. TGFβ and IL-1β; P < 0.05). Conversely, the abundance of autophagy-related transcripts were comparable and the range of outcome measures for either model exhibited a considerably more confined uncertainty distribution than those observed for the inflammatory markers. Organotypic air-liquid interface models of nAEC are predictive of outcomes related to barrier function, mucociliary architecture and autophagy gene activity in corresponding bAEC models. However, inflammatory markers exhibited wide variation which may be explained by the sentinel immunological surveillance role of the sinonasal epithelium.Juliette Delhove, Moayed Alawami, Matthew Macowan, Susan E. Lester, Phan T. Nguyen, Hubertus P. A. Jersmann, Paul N. Reynolds and Eugene Rosciol
Early life inter-kingdom interactions shape the immunological environment of the airways
Background: There is increasing evidence that the airway microbiome plays a key role in the establishment of respiratory health by interacting with the developing immune system early in life. While it has become clear that bacteria are involved in this process, there is a knowledge gap concerning the role of fungi. Moreover, the inter-kingdom interactions that influence immune development remain unknown. In this prospective exploratory human study, we aimed to determine early post-natal microbial and immunological features of the upper airways in 121 healthy newborns. Results: We found that the oropharynx and nasal cavity represent distinct ecological niches for bacteria and fungi. Breastfeeding correlated with changes in microbiota composition of oropharyngeal samples with the greatest impact upon the relative abundance of Streptococcus species and Candida. Host transcriptome profiling revealed that genes with the highest expression variation were immunological in nature. Multi-omics factor analysis of host and microbial data revealed unique co-variation patterns. Conclusion: These data provide evidence of a diverse multi-kingdom microbiota linked with local immunological characteristics in the first week of life that could represent distinct trajectories for future respiratory health
The skin microbiome in the first year of life and its association with atopic dermatitis
publishedVersio
Deep multi-omic profiling reveals molecular signatures that underpin preschool wheeze and asthma
Background
Wheezing in childhood is prevalent, with over half of all children experiencing at least one episode by age six. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear.
Objective
This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multi-omic profiling.
Methods
Unsupervised, group-agnostic integrative multi-omic factor analysis was performed using host/bacterial (meta-)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old.
Results
Two multi-omic factors were identified: one characterising preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by Type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression towards asthma from ages 1-18 was dominated by changes related to airway epithelial cell gene expression, Type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae.
Conclusion
These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies
Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention
Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus
XIII. Note upon the occurrence of a new Puccinia upon Mesembryanthemum micranthum Haw
n/
- …
