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Abstract 

Background:  There is increasing evidence that the airway microbiome plays a key role in the establishment of res-
piratory health by interacting with the developing immune system early in life. While it has become clear that bacteria 
are involved in this process, there is a knowledge gap concerning the role of fungi. Moreover, the inter-kingdom 
interactions that influence immune development remain unknown. In this prospective exploratory human study, 
we aimed to determine early post-natal microbial and immunological features of the upper airways in 121 healthy 
newborns.

Results:  We found that the oropharynx and nasal cavity represent distinct ecological niches for bacteria and fungi. 
Breastfeeding correlated with changes in microbiota composition of oropharyngeal samples with the greatest impact 
upon the relative abundance of Streptococcus species and Candida. Host transcriptome profiling revealed that genes 
with the highest expression variation were immunological in nature. Multi-omics factor analysis of host and microbial 
data revealed unique co-variation patterns.

Conclusion:  These data provide evidence of a diverse multi-kingdom microbiota linked with local immunological 
characteristics in the first week of life that could represent distinct trajectories for future respiratory health.

Trial registration:  NHS Health Research Authority, IRAS ID 199053. Registered 5 Oct 2016. https://​www.​hra.​nhs.​uk/​
plann​ing-​and-​impro​ving-​resea​rch/​appli​cation-​summa​ries/​resea​rch-​summa​ries/​breat​hing-​toget​her/
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Background
Vast numbers of microorganisms, collectively referred 
to as the microbiota, reside on our body barrier surfaces, 
including the skin, gut and airways. The bacterial com-
ponent of the microbiota has received the most attention 
due to its high abundance, and in particular, the accessi-
bility of 16S rRNA gene amplicon sequencing and analy-
sis pipelines. However, a wider range of microbes (fungi, 

viruses, archaea) representing different kingdoms of life 
also reside in the respiratory tract of healthy individuals, 
yet little is known about their function, particularly in 
health. Because they share the same host microenviron-
ments, it is enticing to speculate that these microorgan-
isms interact, compete or even cooperate with each other 
with potential consequences for the host. It is now well 
established that the respiratory (bacterial) microbiota 
develops rapidly after birth, within the first few weeks of 
life, shaped by the tissue habitat. This pattern has been 
observed in multiple studies focusing upon the bacterial 
microbiota of the upper respiratory tract [1–5] and in a 
single study for the lower airways [6], due to limitations 
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surrounding the invasive sampling procedures in healthy 
children. While it is clear that niche-specific physiologi-
cal differences shape the composition of the bacterial 
microbiota across the length of the respiratory tract in 
the first weeks of life, whether a similar process operates 
for other types of microbial life remains to be elucidated.

Subtle changes in the bacterial composition of the 
upper airways microbiota, or disrupted colonisation pat-
terns in the first year of life, have been linked to suscep-
tibility to respiratory infections [7, 8] and inflammatory 
diseases later in life, such as wheeze and asthma [2, 7, 
9–11]. Yet, the mechanisms underlying the correlations 
between bacterial taxonomic composition and disease 
are poorly understood. In addition to providing resist-
ance to invading pathogens and modulating immune 
responsiveness in inflammatory conditions, the airway 
microbiota also plays a central role in the development 
of the immune system during a critical time window in 
early life. This idea has been supported by experimental 
studies with germ-free mice, or treatment with broad 
spectrum antibiotics in early life, which led to enhanced 
susceptibility to allergic airway inflammation in mouse 
models of allergic asthma [12–14]. By contrast, mecha-
nistic insights derived from human neonatal data are 
scarce and are often limited to correlations with broad 
clinical phenotypes [1, 2, 4, 7, 15].

In this study, we aimed to investigate early-life bacte-
rial and fungal communities in conjunction with the 
local host immune landscape in the upper respiratory 
tract of healthy newborns. In essence, we aimed to define 
the  microbial and immunological features of the healthy 
upper airways. Amplicon sequences of the bacterial 16S 

rDNA region and the fungal Internal Transcribed Spacer 
(ITS) region as well as paired host nasal transcriptomics 
samples were analysed from 121 1-week old neonates of 
the Breathing Together Study cohort [16]. Here, we pro-
vide  evidence of a diverse multi-kingdom microbiota in 
the upper airways of healthy newborns linked with dis-
crete immunological profiles.

Results
Study design and quality control
We enrolled healthy newborns of the ongoing prospec-
tive Breathing Together birth cohort, aiming to investi-
gate the pulmonary epithelial barrier and immunological 
functions at birth and in early life [16]. We applied very 
strict postnatal age selection criteria to ensure samples 
were as comparable as possible; specifically, samples from 
121 participants taken within a tight time window of 6 to  
9 postnatal days were included in the study. Detailed 
characteristics of study participants are presented in 
Supplementary Table  1. Neonates were sampled across 
2 upper respiratory niches, the nasal, and oropharyngeal 
cavities, for multi-kingdom microbiota profiling (Fig. 1). 
Additional samples were simultaneously obtained from 
the nasal cavity, predominantly consisting of epithelial 
cells, for host gene expression analyses.

Controlling for contaminants in low biomass sam-
ples, such as neonatal airways swabs, is key to prevent 
biases due to  possible  bacterial DNA contamination 
from extraction and other processing reagents. This also 
applies to DNA of fungal origin, which has received far 
less attention. To minimize the risk of contamination, 
all laboratory processing steps were carried in a DNAse 

Fig. 1  Study design. 121 healthy 1-week-old newborns were prospectively enrolled from different recruiting centres in Scotland (Aberdeen, 
Edinburgh) and England (Imperial College London, Queen Mary University London and Isle of Wight). Participants were sampled across two 
respiratory sites, the nostrils and oropharynx, for both bacterial and fungal targeted amplicon sequencing. An additional set of samples was 
acquired from the nostrils for host gene expression analyses. Resulting datasets and relevant metadata were integrated to address the impact of 
cross-kingdom associations on the developing respiratory immune system
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and UV-treated laminar flow hood. In addition, 3 types 
of negative controls n = 6 PCR controls, n = 6 DNA 
extraction controls, n = 8 “air” swabs (Eswab opened and 
closed in the room where the sampling took place) were 
processed alongside clinical specimens at different pro-
cessing stages, including sequencing. Both samples and 
taxa were quality filtered using a 2-step approach. First, 
potential contaminant Amplicon Sequence Variants 
(ASVs) were identified and removed using the decontam 
R package [17]. 28 bacterial and 16 fungal ASVs were 
identified as contaminants (Fig.  2a) and subsequently 
removed from the sequencing datasets. In a second step, 
samples falling below a minimum ASV count threshold of 
5000 were excluded from the dataset Fig. 2b. None of the 
negative control samples (PCR, DNA extraction) passed 
the read count filter step, giving confidence that the ASVs 
passing the 2-step filter represent valid microbial sig-
nals from the upper respiratory tract. Similarly, none of 
the swab negative controls (air) passed the quality con-
trol filter with the exception of one for fungal amplicon 
sequences. 66% (78/118) and 57% (68/119) of the nasal 
respiratory niche samples passed the quality filtering 
for bacteria  (Fig.  2c) and fungi (Fig.  2d)  amplicon data, 
respectively. Differences between bacterial and fungal 
data filtering were more pronounced in the oropharyn-
geal respiratory niche samples with 88% (105/119) of 
samples passing the filter for bacterial data and only 37% 
(44/119) for fungi. Bacterial microbiota data consisted of 
536 ASVs after filtering distributed over 8 bacterial phyla 
with Firmicutes, Actinobacteria and Proteobacteria being 
the most abundant phyla and Streptococcus, Staphylo-
coccus, Gemella, Rothia, and Corynebacterium the most 
prevalent genera (Fig. 2c). Comparatively, fungal micro-
biome data consisted of 397 ASVs representing two fun-
gal phyla, Ascomycota and Basidiomycota, with genera 
Candida, Debaromyces, Trametes, Wickerhamomyces, 
and Rhodotorula being the most prevalent (Fig. 2d).

Bacterial and fungal community constituents are shaped 
by the local respiratory habitat
We first aimed to examine the impact of upper respira-
tory tract niches on bacterial and fungal community 
structure. Both bacterial load (Wilcoxon, W = 2843, P = 

1.517e−15) and bacterial diversity (Wilcoxon, W = 2610, 
P = 2.801e−05) were significantly higher in the oro-
pharyngeal habitat when compared to the nasal habitat 
(Fig. 3a), a finding previously observed in samples from 
young children [18] and adults [19]. Comparatively, the 
mycobiome showed the opposite results with a signifi-
cant decrease in fungal diversity (Wilcoxon, W = 2244, P 
= 8.456e−06) in the oropharynx when compared to nasal 
samples (Fig. 3b). No clear differences were observed for 
fungal load analysis (Wilcoxon, W = 7847, P = 0.052), 
likely due to the majority of samples falling below the 
detection threshold. Principal Component Analysis 
(PCoA) on weighted Unifrac distance between samples 
showed that bacterial composition was driven primarily 
by the habitat (Fig. 3c), consistent with previous studies 
[4, 5, 15]. This was also the case for fungi despite a bigger 
taxonomic overlap between the nasal and oropharyngeal 
fungal communities (Fig.  3d). Permutational Multivari-
ate Analysis of Variance (PERMANOVA) further dem-
onstrated that samples clustered by respiratory niche, 
with a larger R2 value for the bacterial kingdom (PER-
MANOVA, R2 = 4.7%, adj. P < 0.001) than for the fungi 
one (PERMANOVA, R2 = 3.7%, adj. P < 0.001) indicative 
of a stronger microenvironmental pressure for the bacte-
rial community. Multivariate Analysis by Linear Models 
(MaAsLin) was performed to infer niche-specific taxa. 
We identified 26 significant niche-specific bacterial taxa 
(Fig. 3e) with several Corynebacterium and Staphylococ-
cus genera being characteristic of the nasal niche, and 
Streptococcus of the oropharyngeal habitat. Top bacte-
rial nasal and oropharyngeal specific taxa were undefined 
species of Corynebacterium (MaAsLin, coef = -5.712, P 
= 3.366e−23) and Streptococcus (MaAsLin, coef = 5.006, 
P = 1.101e−11) genera, respectively (Fig.  3f ). In com-
parison, only 5 niche-specific taxa were detected in the 
fungal community (Fig.  3g). Candida palmioleophila 
(MaAsLin, coef = 3.419, P = 8.378e−06) and the envi-
ronmental fungi Trametes versicolor (MaAsLin, coef = 
−3.210, P = 1.776e−04) were found to be fungal signa-
ture taxa of the oropharyngeal and nasal respiratory sites, 
respectively (Fig. 3h). Of note, relative abundance levels 
of Trametes versicolor ASV, an environmental lignicolous 
fungal species commonly detected in house dust [20, 21] 

(See figure on next page.)
Fig. 2  Quality control and decontamination of microbiota samples. a Scatter plots showing the prevalence of bacterial and fungal taxa in samples 
versus negative controls (extraction and PCR water controls), with taxa in red representing those that were identified as contaminants and those 
in green representing taxa retained for downstream analyses. b Violin plots with log-transformed bacterial and fungal read counts for extraction, 
PCR water and swab controls, a summary of read counts for excluded samples in red, and samples in green. c Relative abundance data for bacterial 
taxa in each sample both in the raw data and following the 2-step quality control measures (removal of contaminants and filtering by read 
counts, abundance and prevalence). Nasal and oral samples are shown on the left, and controls are shown on the right. d Corresponding relative 
abundance data for fungal taxa
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Fig. 2  (See legend on previous page.)
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and air [22, 23], was not due to contamination in the pro-
cessing steps (Supplementary Fig. 1b, second panel). Our 
results suggest that respiratory site-specific microbial 
communities of different kingdoms emerge within the 
first postnatal week.

Multi‑omics network inference reveals potential 
cross‑kingdom microbial interactions
We then aimed to investigate the impact of cross-king-
dom interactions on niche-specific community structure 

using SPIEC-EASI [24] (SParse InversE Covariance esti-
mation for Ecological ASsociation Inference), a sophisti-
cated and compositionally robust statistical framework, 
which uses sparse graphical model inference. This tool 
has recently been adapted for multiple kingdoms, allow-
ing the prediction of bacterial and fungal interactions 
in a study investigating lung and skin microbiota [25]. 
Inferred nasal networks of bacterial and fungal commu-
nities exhibited similar structures; multiple microbial 
hubs, 10 for bacteria and 12 for fungi (Fig.  4a) with an 

Fig. 3  Bacterial and fungal community structure in the nasal and oropharyngeal respiratory niches. a Violin plots representing bacterial load 
measured by quantitative PCR and bacterial diversity (Shannon index) for samples of the nasal and oropharyngeal habitats. b Corresponding 
violin plots for fungal amplicon data. c PCoA on the weighted UniFrac distances shown along the first two principal coordinates for bacterial 
amplicon data. Ellipses represent the 95% confidence interval around the group centroid. d Corresponding PCoA for fungi amplicon data. e 
Bacterial signature amplicons comparing the nasal and oropharyngeal niches using MaAsLin for Differential Abundance testing (DA) adjusted for 
sampling and processing variation. Only significant taxa with a p value < 0.05 are shown. f Normalised relative abundance of the top 2 bacterial 
signature taxa of the nasal and oropharyngeal niches. Boxplots represent the median and interquartile range with whiskers determined by Tukey’s 
method. g Fungal signature amplicons comparing the nasal and oropharyngeal niches using MaAsLin. h Normalised relative abundance of the 
top 2 fungal signature taxa of the nasal and oropharyngeal niches. Sample sizes for all panels are n = 78 for nasal habitat bacterial data, n = 105 for 
oropharyngeal bacterial data, n = 68 for nasal habitat fungal data and n = 44 for oropharyngeal fungal data. Colors are representative of the nasal 
(grey) and oropharyngeal (orange) samples with grey lines linking samples obtained from the same individual. Statistics represent the result of 
non-parametric Wilcoxon Rank Sum testing for panels a–b with p value < 0.05, < 0.01 and < 0.001 represented as *, ** and ***, respectively
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increased number of edges (connecting lines) for bacteria 
(n = 76 edges) when compared to fungi (n = 48 edges) 
(Fig.  4b). The corresponding multi-kingdom network 
consisted of a single and densely connected network 
with 277 edges in total and only 1 disconnected bacterial 
singleton. 25% were inter-kingdom (bacteria-fungi) con-
nections, indicative of positive co-occurrences between 
the two kingdoms of life (Fig.  4b). Edge degrees inves-
tigation confirmed that the multi-kingdom nasal net-
work was highly connected with an average degree (the 
number of connections that an ASV has to other ASVs 
in the network) of 3.2 and a maximum of 9 (Fig. 4c). In 
comparison, mean edge degrees of single kingdom nasal 
networks were 1.48 and 1.37 for bacteria and fungi, 
respectively, with an edge maximum of 5 for bacteria and 
6 for fungi. While the oropharyngeal bacterial network 
was comparable to its nasal counterpart, the oropharyn-
geal fungal network was  different, characterized by no 
consistent community structure (Fig.  4d). Specifically, 

known pathogenic taxa with high average relative abun-
dance such as Candida, Debaromyces or Saccharomyces 
were represented as singletons. Fungal oropharyngeal 
network average degree was 0.5 with a maximum of 2, 
a low connectivity also reflected in the cross-kingdom 
network where only 17% of the edges represented fungi-
fungi interactions (Fig.  4e). In the oropharyngeal multi-
kingdom network, bacteria-bacteria interactions were 
the most prevalent (67% of the total number of edges) 
and overall connectivity was lower than in the nasal 
equivalent with 93 edges in total, an average edge degree 
of 1.58 and a maximum of 6. Taken together, these results 
highlight ecological interactions between bacteria and 
fungi, particularly within the nasal microenvironment.

Perinatal factors such as breastfeeding shape 
both bacterial and fungal microbiota composition
Numerous environmental or birth-related factors have 
been shown to influence the composition of the upper 

Fig. 4  Cross-kingdom microbial interactions in the nasal and oropharyngeal respiratory niches and effect of perinatal factors on nasal and 
oropharyngeal microbiota composition. a Nasal habitat interaction network inferred with SPIEC-EASI for bacteria only (left panel), fungi only 
(middle panel) and both kingdoms (right panel) on 5% prevalence filtered ASVs. Connecting edges represent significant interactions with node size 
proportional to ASV average abundance in total samples set and nodes are colored by Kingdom (red color for bacterial ASVs, green color for fungal 
ASVs) with opacity increasing with closeness centrality. b Number of intra- and inter-kingdom edges for each network (bacteria-bacteria in red 
color, fungi-fungi in green color and bacteria-fungi in salmon color). c Frequency of node degrees for each network (red color for bacterial networks, 
green color for fungal networks, salmon color for multi-kingdom networks). d–f Corresponding figures for the oropharyngeal cavity. g Bacterial taxa 
associated with breastfeeding or its absence in the oropharyngeal cavity and normalised relative abundance of the top 2 bacterial taxa associated 
with feeding mode. Boxplots represent the median and interquartile range with whiskers determined by Tukey’s method. h Corresponding fungi 
data. i Fungal taxa associated with country factor in the nasal habitat. Sample sizes for the networks are n = 51 for nasal and n = 39 for oropharynx 
networks, respectively. Sample sizes are n = 78 for nasal habitat bacterial data, n = 105 for oropharyngeal habitat bacterial data, n = 68 for nasal 
habitat fungal data and n = 44 for oropharyngeal habitat fungal data differential abundance testing
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respiratory tract bacterial microbiota in early-life [1, 2, 
4, 15, 26]. We sought to explore how the different res-
piratory microenvironments responded to selective pres-
sures and whether bacterial and fungal communities 
responded in a similar manner. Breastfeeding showed 
the strongest effect on overall bacterial and fungal oro-
pharyngeal community composition (multivariable PER-
MANOVA, breastfeeding effect R2 = 3.8%, adj. P = 0.003 
for oropharyngeal bacteria and R2 = 4.7%, adj. P = 0.011 
for oropharyngeal fungi) (Table  1). Differential abun-
dance testing further corroborated this observation by 
detecting 6 bacterial and 5 fungal signature taxa related 
to breastfeeding.

Differentially abundant bacterial taxa included mem-
bers of the Streptococcus genus, a trend observed in 
a recent study investigating both oropharyngeal and 
nasopharyngeal samples in the first 6 months of life 
[15]. Notably, the use of ASVs rather than Opera-
tional Taxonomic Units (OTUs) allowed us to dis-
criminate between different Streptococcus sequence 
variants at species level. For example 2 ASVs of Strepto-
coccus parasanguinis (MaAsLin, coef = −3.07/−2.636, 
P = 3.97e−03/1.888e−02) and 1 of Streptococcus mitis 
(MaAsLin, coef = −2.39, P = 2.92e−03) were discri-
minant taxa for non-breastfed neonates while another 
Streptococcus ASV (undefined at species level) was highly 
abundant in samples from breastfed children (MaAs-
Lin, coef = 4.149, P = 4.71e−05) (Fig.  4a). Similarly, 
breastfeeding significantly impacted the composition 
of the fungal communities in the oropharyngeal cavity 
(Fig. 4b). Specifically, 2 ASVs belonging to known path-
ogenic genus Candida were most abundant in neonates 
who were not breastfed. This was particularly notable 
for Candida palmioleophila (MaAsLin, coef = −4.99, P 
= 0.002) detectable in 57% of the non-breastfed neonates 
and completely absent in 88% of those breastfed. Finally, 

the country (Scotland or England) in which the child was 
born significantly impacted the overall nasal microbiome 
fungal composition (multivariable PERMANOVA, coun-
try effect R2 = 3.3%, adj. P = 0.007) (Fig. 4c). This differ-
ence in beta diversity was largely due to differences in the 
relative abundance of the environmental fungi Trametes 
versicolor (MaAsLin, coef = −3.74, P = 0.004), previously 
identified as one of the signature taxa of the nasal cavity. 
We also confirmed that differentially abundant taxa were 
either completely absent (most of the cases) or present in 
significantly lower proportions in negative controls for 
both bacteria (Supplementary Fig.  1a) and fungi (Sup-
plementary Fig. 1b). In summary, of all the factors tested, 
breastfeeding had the strongest effect on oropharyngeal 
microbial colonisation, affecting both bacterial and fun-
gal communities.

Multi‑Omics Factor Analysis reveals potential host‑immune 
interactions
We next sought to explore host-microbial interactions 
within the nasal microenvironment using host tran-
scriptomics. We first examined whether perinatal fac-
tors could influence host gene expression independently 
of microbial colonisation. Unlike the microbial com-
munities, no factor was associated with changes in the 
expression of protein coding genes. Protein coding genes 
related to immune responses displayed higher variabil-
ity in expression when compared to non-immunological 
genes (Wilcoxon, W = 247573, P = 8.72e−5), sugges-
tive of varying degrees of immune activation in healthy 
newborns (Fig.  5a). We hypothesised that the pres-
ence of specific microbes in the upper respiratory tract 
of healthy newborns could shape immune function and 
explain the high variability observed in expression. Inte-
gration of host immune gene expression and multi-king-
dom microbiota data was performed using Multi-Omics 

Table 1  PERMANOVA and MaAsLin results investigating the effect of perinatal factors on bacterial and fungal microbiota composition 
for each respiratory site. Multivariable model PERMANOVA results are represented with the effect size (R2) and corresponding p value. 
PERMANOVA results with a p value < 0.05 are highlighted with dashed lines. For MaAsLin results, integers represent the number of 
Differentially Abundant (DA) ASVs for a given factor. Factors of interest with PERMANOVA p values < 0.05 and at least 1 differentially 
abundant ASV are highlighted with dashed lines

Nasal Bacteria Nasal Fungi Oropharyngeal Bacteria Oropharyngeal Fungi

PERMANOVA MaAsLin PERMANOVA MaAsLin PERMANOVA MaAsLin PERMANOVA MaAsLin

R2 P-value DA ASVs R2 P-value DA ASVs R2 P-value DA ASVs R2 P-value DA ASVs

Gestational age at birth 0.050 0.917 1 0.060 0.369 2 0.065 0.090 None 0.075 0.779 None

Delivery mode 0.006 0.938 None 0.012 0.658 None 0.009 0.362 None 0.018 0.684 None

Breastfeeding 0.015 0.280 None 0.018 0.197 1 0.038 0.003 6 0.047 0.011 5

Country 0.015 0.306 None 0.032 0.007 1 0.021 0.048 None 0.038 0.044 None

Gender 0.007 0.902 None 0.012 0.679 None 0.007 0.512 None 0.026 0.290 None
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Factor Analysis (MOFA+), enabling the identification 
of shared sources of variation and correlation between 
multi-omics data sets [27, 28]. One advantage of this 
tool is that the probabilistic framework can handle miss-
ing datasets, allowing us to capture information from all 
available patients (n = 109 subjects, n = 85 gene expres-
sion datasets, n = 78 bacterial datasets, n = 69 fungal 
datasets) even if the datasets do not overlap for a given 
patient due to missing samples or failed QC (Fig. 5b). The 
cumulative proportion of variance (R2) explained by each 
omics modality was highest for immune gene expression 
(63%), followed by bacterial composition (15%) and low-
est for fungal composition (7%) (Fig. 5c). While the first 
2 inferred factors were principally explained by variation 
in gene expression, factors 3 to 6 revealed variation that 
was shared between the omics modalities (Fig. 5d). Load-
ings of factors explained by at least 2 omics modalities 
were investigated. Weights analysis of Factor 3 revealed 
that ASVs of Streptococcus, Lactococcus and Lactoba-
cillus genera (Fig.  5e) were positively associated with 
lymphocyte antigen 6 family member D (LY6D) gene 
expression, as well as 2 pro-inflammatory alarmins, S100 
Calcium-Binding Protein A8 (S100A8) and A9 (S100A9), 
known to play a role in the development of neutrophilic 
asthma [29–31] (Fig.  5f ). Genera inversely correlated 
with factor 3 included two ASVs belonging to Granuli-
catella and two to Streptococcus genera, in addition to 
Gemella. Factor 4 was characterized by negative weights 
for Staphylococcus ASVs (Fig.  5g) and positive weights 
for immune genes related to interferon signalling, inter-
feron-induced protein with tetratricopeptide repeats 2 
(IFIT2) and Interferon Alpha And Beta Receptor Subu-
nit 1 (IFNAR1), cell adhesion molecule NECTIN2 and 
annexin ANXA11 (Fig. 5h). This suggests a negative cor-
relation between specific Staphylococcus species, usu-
ally considered as “healthy” commensals in the nasal/
nasopharyngeal cavities, with proinflammatory inter-
feron signals. Factors 5 captured variation in all 3 omics 
modalities with top bacterial weights related to Strepto-
coccus ASVs, as well as 2 ASVs of Rothia genera (Fig. 5i). 
Of note, 2 of these were previously identified as signature 
taxa for the oropharyngeal cavity (Rothia and Streptococ-
cus parasanguinis) (Fig.  3e). Factor 5 positive weights 
were principally characterised by Streptococci and Rothia 
genera with some of the ASVs overlapping with factor 
3 (Fig.  5i). The strongest fungal weight associated with 

factor 5 was a Penicillium ASV, followed by Saccharo-
myces (Fig.  5j). Top immune gene weight was linked to 
Fc Fragment Of IgE Receptor Ig (FCER1G) expression, 
a receptor for immunoglobulin E (IgE) and a key factor 
in the pathogenesis of allergic asthma [32]. Other genes 
with a positive weight associated with Factor 5 included 
Human Leukocyte Antigen genes A (HLA-A) and C 
(HLA-C), members of the histocompatibility complex 
(MHC) class I. Finally, factor 6 was associated with nega-
tive weights for bacterial Corynebacterium and 2 Strep-
tococci (Fig.  5i), as well as environmental fungi Stereum 
and Gloeophyllum. With respect to host gene expression, 
positive weights of 2 Interferon-induced transmembrane 
protein genes (IFITM1 and IFITM3) were associated 
with factor 6. Altogether, our data highlighted that vari-
ations in the nasal transcriptome of healthy newborns 
were largely explained by differences in the expression 
of immunologically relevant genes. Integration of host 
and microbial data using MOFA+ confirmed that most 
of the variation between healthy subjects was attribut-
able to differences in immune gene expression followed 
by bacteria and only moderately to differences in fungal 
composition. Members of the Streptococcus genus were 
repeatedly linked with variability in immune gene expres-
sion, including genes linked with asthma development 
(alarmins, IgE receptor) or anti-viral immunity (inter-
feron signalling and MHC class I).

Discussion
While it is becoming increasingly evident that bacteria 
at mucosal surfaces play a key role in early life immune 
education, there is a clear knowledge gap on the role of 
fungi in this process, and a lack of detail concerning the 
specific immunological pathways that are affected. Mech-
anistic evidence concerning the role of the gut mycobi-
ome in neonatal immune maturation has just started to 
emerge [33], and our data now provides insights into 
the role of fungi in immune development of the airways. 
Multiple studies have highlighted changes in adult air-
ways mycobiome composition in the context of chronic 
respiratory diseases such as asthma, cystic fibrosis, bron-
chiectasis and chronic obstructive pulmonary disease 
[34, 35]. Understanding the early stages of poly-microbial 
airways colonisation and its impact on local immunity is 
key to understanding the contribution of these microbes 
to respiratory diseases.

Fig. 5  Multi-Omics Factor Analysis (MOFA+) of host immune gene expression and microbiota in the nasal cavity. a Gene expression coefficient of 
variation (CV) of immune (grey) versus non-immune (yellow) protein coding genes. b Dataset availability per subject (columns) and omics modality 
(rows). Unavailable datasets (no sample collected or failed QC) are highlighted in grey. c Cumulative proportion of variance explained (R2) by each 
omics modality. d Percentage of variation explained by each factor across the different omics modalities. Factors with more than 2 omics modalities 
are highlighted in bold. e–n Loadings of the ASVs and/or genes with the largest weights for a given factor. Yellow color relates to immune genes, 
red to bacteria and green to fungi. Sample size for MOFA+ analysis is n = 109 subjects

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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We found that both the bacterial and fungal arms of 
the microbiota develop rapidly after birth (within the first 
week of life). Similar to what has been described for bac-
teria [4, 6, 15], the composition of the fungal microbiota 
is primarily shaped by the respiratory niche. This aligns 
with the concept that the respiratory tract provides dis-
tinct microenvironments along its length harbouring 
different physiological properties. Specifically, the nasal 
epithelium represents the first point of contact to the 
external environment through inhaled air. Large parti-
cles are generally stopped by the nasal cilia, while smaller 
particles such as bacteria or fungi (spores) can be trapped 
by the surrounding mucus layer. This might explain the 
presence of airborne environmental fungi such as Tram-
etes versicolor, found to be signature taxa of the nasal 
habitat, which also exhibited significantly higher fungal 
diversity (and load, to a lesser extent) when compared to 
the oropharyngeal habitat. This environmental effect was 
also reflected with differences in beta diversity driven 
by Trametes versicolor when comparing samples from 
England and Scotland-born babies. Although Tram-
etes has been reported in several studies investigating 
the mycobiome of respiratory samples [36–40], in some 
cases correlating with health or disease, results should 
be interpreted cautiously given the potential influence 
of geographic location. The bacterial component of the 
microbiota showed the opposite trend; namely a decrease 
in bacterial diversity and load in the nasal habitat when 
compared to the oropharyngeal habitat. In fact, the oro-
pharyngeal cavity has been described as the home of the 
second largest and diverse microbiota community after 
the gut, given the fact that it provides a rich and stable 
environment for bacteria in terms of temperature, pH 
and availability of nutrients [41].

We found that breastfeeding (or its absence) shaped 
the composition of the bacterial and fungal oropharyn-
geal microbiota, suggesting that both kingdoms of life 
are under similar selective pressures. While breastfeed-
ing differences in the bacterial component were mainly 
driven by distinct Streptococcus ASVs, the most strik-
ing change in relative abundance was observed for fungi 
with significant increases in known pathogens related 
to the Candida genera in the absence of breastfeeding. 
Consistent with these findings, oligosaccharides pre-
sent in human milk have been shown to reduce Candida 
albicans virulence in epithelial cell cultures [42]. These 
changes could also be mediated by maternal bioactive 
molecules such as immunoglobulins (sIgA, IgG, IgM) or 
other anti-bacterial proteins found in the milk. Candida 
species growth is typically limited by both local immu-
nity and competition with other microbes, such as bac-
teria. The inability to amplify enough fungal material in 
63% of the oropharyngeal samples further reinforces the 

idea that fungal colonisation may be opportunistic in the 
presence of a rich bacterial microbiota. This was also 
reflected in the network inference results, as the highly 
abundant Candida palmioleophila did not cluster with 
any other fungi in the multi-kingdom network, arguing 
for competitive or antagonistic interactions.

Multi-kingdom microbial networks inference of the 
two respiratory tract habitats also revealed potential 
bacterial and fungal relationships. This was particularly 
the case in the nasal cavity, probably reflective of a con-
stant influx (inhalation) of microorganisms allowing the 
cohabitation between the two microbial kingdoms. In 
contrast, the oropharyngeal network organisation con-
sisted of small disconnected microbial hubs indicative 
of variable poly-microbial communities, likely to be less 
resilient to environmental pressures, such as breastfeed-
ing. The nasal mucosa represents the first line of host 
defense against airborne pathogens, allergens and other 
foreign particles. In addition to directly secreting anti-
microbial components (defensins, lactoferrins, lysozyme, 
and reactive oxygen or nitrogen species), it plays a role 
in initiating and controlling immune responses. We 
found that immune-related genes displayed an increased 
variability in their expression when compared to non-
immune genes. Given the importance of the microbiota 
in immune maturation, we investigated whether differ-
ences in local gene expression were linked with the pres-
ence of particular bacterial or fungal microorganisms 
using multi-omics data integration. Although immune 
gene expression was the main factor driving heteroge-
neity between individuals, MOFA+ revealed some fac-
tors with shared variation across omics. These mainly 
involved Streptococcus species linked with alarmin sig-
nals (S100 genes) and MHC class I genes (HLA genes) or 
Staphylococcus ASVs, whose weights inversely correlated 
with interferon inducible genes. In comparison, associa-
tions between immune gene expression and fungal ASVs 
were sparse, arguing for a stronger impact of bacteria, 
as compared to fungi, on host immunity. Two longitudi-
nal studies have linked upper airways colonization with 
Streptococcus in the first months of life with recurrent 
wheeze and/or asthma at 5 years of age [2, 43]. Given 
the critical role that type I interferon and MHC I mol-
ecules play in antiviral responses and the risk posed by 
early childhood viral infections for the development of 
wheeze and asthma [44], the investigation of the respira-
tory virome represents a key target for future studies.

Conclusion
In summary, our data reveals the presence of a multi-
kingdom microbiota linked with local gene expression 
in the upper respiratory tract of healthy newborns. We 
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found that the respiratory niche (nostrils versus oro-
pharynx) was the primary determinant of multi-king-
dom microbiota composition, as early as 1 week after 
birth. Breastfeeding impacted the microbiota the most, 
leading to a shift in both bacterial and fungal micro-
biota composition, with Candida relative abundance 
dominating in oropharyngeal samples of non-breastfed 
neonates. Investigation of nasal transcriptome pro-
files revealed that immune gene expression was highly 
variable. Multi-omics factor analysis revealed shared 
sources of variation, particularly linking expression of 
innate immune genes and bacteria. These findings high-
light the importance of considering the microbiota as 
a dynamic multi-kingdom entity, capable of regulating 
local immunity, and potentially influencing long term 
respiratory health.

Methods
Participants recruitment and sampling
This study included 121 healthy newborns from the 
Breathing Together birth cohort [16] sampled 1 week 
after birth between February 2017 and May 2018. Par-
ticipants were recruited either antenatally or postnatally 
in five different centres in the UK (Aberdeen, Edinburgh, 
Imperial College London, Queen Mary University Lon-
don and Isle of Wight). Inclusion criteria included term 
birth (>37 weeks gestational age) and written parental 
consent. Exclusion criteria for the Breathing Together 
cohort included multiple pregnancies, positive maternal 
group B Streptococcus from vaginal swab or urine culture, 
CPAP or ventilatory support, major health problems (e.g. 
congenital heart disease, cystic fibrosis) and impossibil-
ity to follow up within the years of age time frame (e.g. 
planned relocation). Exclusion criteria for this specific 
study were antibiotics during pregnancy, newborn in 
a special care/intensive care unit, complicated vagi-
nal deliveries and any sampling not falling into the 6–9 
postnatal days time window. Nasal swabs (taken from 
both nostrils—swab inserted and rotated 5 times) and 
oropharyngeal swabs (using a tongue depressor the oro-
pharynx was swabbed by rotating the swab 5 times and 
avoiding touching the oral cavity) were taken for micro-
biota analysis using copanusa eSwabs (COPAN Diagnos-
tics) and stored at −80°C. Subsequently, nasal epithelial 
cells were collected. The infant was held in a supine posi-
tion and the brush [Interdental brush 2.7 mm diameter 
(Dentocare 620)] was inserted into the nasal cavity, and 
directed inferolaterally until resistance was met from the 
medial aspect of the inferior turbinate. The brush was 
rotated swiftly three times to obtain cells and removed 
and placed into an Eppendorf containing 700 μl of RLT 
lysis buffer (Qiagen) with 2-Mercaptoethanol (Sigma), 
snap-frozen and stored at −80°C.

Microbial DNA extraction and sequencing
Samples were centrifuged at 14,000xg for 10min at 4°C, 
and pellets were first incubated with 300U of Lyticase 
(Sigma) at 37°C for 30min with gentle shaking (500xrpm) 
to increase fungal DNA recovery. Resulting lysates were 
further processed using the DNeasy UltraClean Micro-
bial Kit (Qiagen) according to the manufacturer’s proto-
col, and DNA was eluted in 40μl of microbial DNA-free 
water (Qiagen). All extraction steps were carried out in 
microbial DNA-free conditions under a laminar flow 
hood decontaminated and UV-treated before laboratory 
processing. To control for potential microbial DNA con-
taminants, 3 types of negative controls were included: (1) 
ESwabs negative controls obtained (opening and closing 
of a tube at the different sampling sites), (2) extraction 
negative controls (microbial DNA-free water processed 
through the kit) and (3) PCR negative controls (PCR 
reaction with microbial DNA-free water instead of DNA 
template). Positive controls were obtained by process-
ing 5μl of ZymoBIOMICS Microbial Community (Zymo 
research) similarly to the samples for which we were 
able to detect 7 out of 8 bacterial species present in the 
positive control samples. Each sample was amplified in 
2 different reactions, the first one with custom barcoded 
primers targeting the bacterial 16S rDNA v1-v2 region 
(F-27/R-338) as previously described [45] and the sec-
ond one with custom barcoded primers targeting fun-
gal Internal Transcribed Spacer region 1 (ITS1) region. 
Primers were as following:

16S-Forward:
5’-AAT​GAT​ACG​GCG​ACC​ACC​GAG​ATC​TAC​ACT​
ATG​GTA​ATT​CCA​GMGTT​YGA​TYMTGG​CTC​
AG-3’,

16S-Reverse:
5’-CAA​GCA​GAA​GAC​GGC​ATA​CGA​GAT​ACG​
AGA​CTG​ATT​NNNNNNNNNNNNAAG​CTG​CCT​
CCC​GTA​GGA​GT-3’,

ITS-Forward:
5’-AAT​GAT​ACG​GCG​ACC​ACC​GAG​ATC​TAC​
ACG​GCT​TGG​TCA​TTT​AGA​GGA​AGTAA-3’,

ITS-Reverse:
5 ’ -C A A​G C A​GA A​GAC ​G G C ​ATA​C GA​GAT​
NNNNNNNNNNNNCGG​CTG​CGT​TCT​TCA​TCG​
ATGC-3’

where the N sequences represent the sample-specific 
12-nucleotides golean barcodes. Each 25μl PCR reac-
tion consisted of 10.4μl of microbial DNA-free water, 1μl 
of each primer at 5μM, 2.5μl of Accuprime PCR buffer 
II (Fisher Scientific), 10μl of DNA template and 1μl 
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of Accuprime Taq polymerase (Fisher Scientific). The 
cycling parameters were as following: initial denaturation 
3min at 94°C, followed by 35 cycles (16S) or 40 cycles 
(ITS) of 30 s denaturation at 94°C, 30 s annealing at 56°C 
(16S) or 52°C (ITS) and 60-s elongation at 68°C, with a 
final extension at 68°C for 10min. Amplicons were quan-
tified using a Fragment Analyzer (Agilent Technologies) 
with the High Sensitivity NGS Fragment Analysis kit, 
pooled at equimolar amounts and purified using AMPure 
XP bead cleanup system (Beckman Coulter). Denatured 
library pools were sequenced on a MiSeq platform with a 
MiSeq Reagent Kit v2 (500-cycles).

Microbial taxonomic profiling
Raw sequences were processed using the microbiome-
dada2 pipeline (see code availability section) using the 
DADA2 (version 1.14.1) [46] R package. Briefly, fastq 
files were demultiplexed using the iu-demultiplex (ver-
sion 2.7) function from illumina-utils tools [47], primers 
and adapters removed with cutadapt [48] (version 2.10), 
reads filtered and trimmed, sequencing error models 
generated, sequences dereplicated, amplicon sequence 
variants (ASVs) inferred, paired-ends merged and chi-
meras removed. Bacterial 16S ASVs were assigned a tax-
onomy using the SILVA database train set (version 123) 
and the SILVA species assignment dataset (version 123) 
for exact sequence matching. Fungal ITS ASVs were 
assigned a taxonomy using the UNITE database general 
release (02.02.2019 version). A phylogenetic tree based 
on ASV sequences was built by performing a multiple-
alignment using DECIPHER R package (version 2.16.1), 
followed by the construction of a neighbor-joining tree 
using phangorn R package (version 2.5.5) before fit-
ting a GTR+G+I (Generalized time-reversible with 
Gamma rate variation) maximum likelihood tree using 
the neighbor-joining tree as a starting point as previously 
described [49]. Contaminant taxa were identified using 
the is Contaminant function of the decontam (version 
1.12.0) R package [17]. DNA extraction and 16S/ITS PCR 
water control samples were used as negative controls, the 
inverse of the bacterial and fungal load qPCR CT val-
ues was used as a measure of DNA concentration, and 
samples were corrected for batch effects. The decontam 
method ‘either’ was selected to identify contaminants as 
those that were either more prevalent in negative con-
trols than true samples (prevalence threshold = 0.5), or 
features with low frequencies relative to the input DNA 
concentration (frequency P statistic threshold <0.2 or 0.3 
for bacteria and fungi, respectively). Contaminant fea-
tures were then removed prior to filtering. Samples with 
less than 5000 ASVs were excluded from the dataset and 
ASVs below 1% prevalence or unassigned at Phylum level 
were filtered out. Shannon index was determined using 

the estimate_richness function of the phyloseq (version 
1.30.0) [50] R package. ASV counts were normalised 
using Cumulative Sum Scaling (CSS) using the calcNor-
mFactors function from MetagenomeSeq (version 1.28.2) 
[51] R package followed by log transformation.

Microbial load quantification
Total bacterial and fungal loads were determined using a 
custom multiplex panel with fluorescent probes targeting 
Pan bacterial 16S and Pan fungal 18S regions. Primers 
and probes were as follows:

BactPan-Forward: 5’-TGG​AGC​ATG​TGG​TTT​AAT​
TCGA-3’,
BactPan-Reverse: 5’-TGC​GGG​ACT​TAA​CCC​AAC​
A-3’,
BactPan-Probe: 5’-CAC​GAG​CTG​ACG​ACA​RCC​
ATGCA-3’ with VIC dye,
FungiPan-Forward: 5’-GGR​AAA​CTC​ACC​AGG​
TCC​AG-3’,
FungiPan-Reverse: 5’-GSWCT​ATC​CCCAK-
CACGA-3’,
FungiPan-Probe: 5’-TGG​TGC​ATG​GCC​GTT-3’ with 
FAM dye.

Each 10μl quantitative PCR reaction consisted of 2.5μl 
TaqPath 1-Step Multiplex Master Mix (Applied Bio-
systems), 0.18μl of each primer at 50μM, 0.25μl of each 
probe at 10μM, 4.28μl of microbial-DNA free water and 
2μl of DNA template. Detection was performed using the 
QuantStudio 6 Flex Real-Time PCR System (Applied Bio-
systems) with the following conditions: one cycle of 95°C 
and followed by 45 PCR cycles of 95°C for 15 s and 60°C 
for 1 min and 15 s. Values are reported as 1/Ct (cycle 
threshold).

Host RNA extraction and sequencing
RNA from cell lysates was extracted using the Quick-
RNA Microprep kit (Zymo Research) according to the 
manufacturer’s handbook and eluted in 40μl of RNAse-
free water. Library preparation was performed using the 
QIAseq UPX 3′ Transcriptome Kit (Qiagen) as per the 
manufacturer’s protocol with 1ng of purified RNA as 
an input. Briefly, during reverse transcription with tem-
plate switching, each sample was tagged with a unique 
molecular index (sample ID) and each RNA molecule 
with a unique molecular index (UMI). After this step, all 
the single-tagged cDNA samples were combined into a 
tube before DNA fragmentation, end-repair, A-addition, 
adapter ligation and universal library amplification. The 
denatured library pool was sequenced on a NovaSeq6000 
platform with a S1 Reagent Kit (10 -cycles).
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Host transcriptome analysis
Raw 3′ transcriptomics data were processed using the 
transcriptome-QiaSeq pipeline (see code availability 
section) using scPipe [52] (version 1.8.0) R package. 
Briefly, fastq files were reformatted to trim both sample 
ID and UMI information and include this information 
in the read header. In the same step, reads with low 
quality and/or complexity were also removed. Reads 
were aligned to the GRCh38 human genome using 
Rsubread [53] (version 2.0.1) R package and counts 
were assigned based on ENSEMBL (version 98) human 
gene annotations. The integration of UMI to each tran-
script allowed a more accurate quantification of mRNA 
transcripts. All UMI mapping to the same genes and in 
the same positions were grouped together and dupli-
cated UMIs removed. Ensembl IDs were converted to 
gene symbols using biomaRt (version 2.45.5) R package. 
Low abundance genes were filtered using the filterBy-
Exp function of EdgeR [54] (version 3.28.1) R package 
with default settings. Gene counts were normalised 
using counts per millions (cpm) using the cpm function 
of EdgeR [54] (version 3.28.1) followed by log transfor-
mation. Coefficient of variation (CV) was calculated as 
following: CV (gene) =

(Normalised gene counts)
Variance ( Normalised gene counts)

 . 
Protein coding genes were retained for downstream 
analyses. Immune gene list was retrieved from the 
Immunogenetic-Related Information Source (IRIS) 
database (December 7, 2014).

Cross‑kingdom interaction analysis
Single-kingdom and cross-kingdom microbial interac-
tions networks were constructed using SParse InversE 
Covariance Estimation for Ecological Association Infer-
ence (SPIEC-EASI) R package [23] (version 1.0.7). 
Cross-kingdom interactions were inferred using the 
SPIEC-EASI extension defined by Tipton and colleagues 
[25]. For microbial networks inference, low abundance 
ASVs with less than 5% prevalence were filtered out and 
only samples with matching bacteria and fungi data were 
used. The Meinshausen-Buhlmann (MB) neighborhood 
selection method was used, and the optimal sparsity 
parameter was selected based on the Stability Approach 
to Regularization Selection (StARS). The StARS variabil-
ity threshold was set to 0.01 (default) for all networks with 
99 repetitions and a nlambda of 20 (default) to achieve 
network stability. Network layout was defined using the 
Kamada-Kawai layout algorithm. Inferred networks were 
imported as graph objects using igraph (version 1.2.5) R 
package. Edge degree frequencies were calculated using 
the degree_distribution function in igraph. The param-
eters were kept the same for all network inferences.

Multi‑omics factor analysis
Multi-omics data integration was performed using 
MOFA+ tool (version 1.2.2) [27]. Microbial ASVs with 
at least 5 counts in 5% of the samples were retained for 
multi-omics data integration and normalised using CLR 
transformation using microbiome R package (version 
1.14.0). Immune gene expression data were normalised 
using the varianceStabilizingTransformation function of 
DESeq2 R package (version 1.32.0) [55]. Data and model 
training options were set to default, and the number of 
factors was set to 10. All downstream analyses such as the 
inspection of the top features with largest weights were 
performed using the plot_weights and plot_top_weights 
functions of MOFA+ tool (version 1.2.2).

Statistical analysis
Differences in microbial load and diversity were 
addressed using non-parametric Wilcoxon Rank Sum 
testing. Principal Coordinate Analysis (PCoA) was per-
formed on the weighted UniFrac distance of normalised 
ASV counts using the ordinate function of phyloseq [50] 
R package (version 1.30.0). Permutational Multivariate 
Analysis Of Variance (PERMANOVA) was performed on 
the weighted Unifrac distance of normalised ASV counts 
with 999 permutations. For the investigation of perinatal 
factors effects, the model was as follows: ‘Gestational age 
at birth + Delivery mode + Breastfeeding + Country + 
Gender’. Differential abundance testing for microbial data 
was performed by using Microbiome Multivariable Asso-
ciation with Linear Models 2 [56] (MaAsLin2) tool with 
the following parameters: minimum feature abundance 
of 1, minimum feature prevalence of 0.1, maximum q 
value threshold value for significance of 0.2 with LM 
analysis method and Benjamini Hochberg q value correc-
tion while adjusting for sampling and processing bias. To 
allow maximal reproducibility in functions requiring ran-
dom pseudo-numbers, a fixed random seed number was 
set to 2. Alpha level of significance was set to 0.05 for all 
statistical tests with p value <0.05, <0.01 and <0.001 rep-
resented as *, ** and ***, respectively.
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