857 research outputs found

    Tolerance of Atmospheric Ammonia by Laboratory Mice

    Get PDF
    A novel preference chamber with four inter-connected compartments was designed and built to test the tolerance of atmospheric ammonia by laboratory mice. The preference chamber incorporated a novel tracking system using an infra-red sensor at each end of each tunnel, which monitored all journeys through the tunnels and their direction. An experiment was successfully undertaken with four batches, each of four mice. Each batch was housed in the chamber for 4 days and given the choice between ammonia concentrations of nominally 0, 25, 50 and 100 ppm after initial familiarization. The results showed that there were two motivations acting on mouse behavior. The mice made extensive use of the whole chamber once they had been trained to use the tunnels, at least 2000 movements between compartments for each group over 48 h. The mice clearly preferred to be in the upper two compartments of the top tier of the chamber rather than in the lower compartments. The mice did not exhibit a clear preference for or aversion to ammonia, which implies that their short- term tolerance of ammonia at potentially noxious concentrations may not be in their long-term interest

    Universal Ecological Patterns in College Basketball Communities

    Get PDF
    The rank abundance of common and rare species within ecological communities is remarkably consistent from the tropics to the tundra. This invariant patterning provides one of ecology's most enduring and unified tenets: most species rare and a few very common. Increasingly, attention is focused upon elucidating biological mechanisms that explain these species abundance distributions (SADs), but these evaluations remain controversial. We show that college basketball wins generate SADs just like those observed in ecological communities. Whereas college basketball wins are structured by competitive interactions, the result produces a SAD pattern indistinguishable from random wins. We also show that species abundance data for tropical trees exhibits a significant-digit pattern consistent with data derived from complex structuring forces. These results cast doubt upon the ability of SAD analysis to resolve ecological mechanism, and their patterning may reflect statistical artifact as much as biological processes

    High-Dimensional Coexistence of Temperate Tree Species: Functional Traits, Demographic Rates, Life-History Stages, and Their Physical Context

    Get PDF
    Theoretical models indicate that trade-offs between growth and survival strategies of tree species can lead to coexistence across life history stages (ontogeny) and physical conditions experienced by individuals. There exist predicted physiological mechanisms regulating these trade-offs, such as an investment in leaf characters that may increase survival in stressful environments at the expense of investment in bole or root growth. Confirming these mechanisms, however, requires that potential environmental, ontogenetic, and trait influences are analyzed together. Here, we infer growth and mortality of tree species given size, site, and light characteristics from forest inventory data from Wisconsin to test hypotheses about growth-survival trade-offs given species functional trait values under different ontogenetic and environmental states. A series of regression analyses including traits and rates their interactions with environmental and ontogenetic stages supported the relationships between traits and vital rates expected from the expectations from tree physiology. A combined model including interactions between all variables indicated that relationships between demographic rates and functional traits supports growth-survival trade-offs and their differences across species in high-dimensional niche space. The combined model explained 65% of the variation in tree growth and supports a concept of community coexistence similar to Hutchinson's n-dimensional hypervolume and not a low-dimensional niche model or neutral model

    Decreasing seagrass density negatively influences associated fauna

    Get PDF
    Seagrass meadows globally are disappearing at a rapid rate with physical disturbances being one of the major drivers of this habitat loss. Disturbance of seagrass can lead to fragmentation, a reduction in shoot density, canopy height and coverage, and potentially permanent loss of habitat. Despite being such a widespread issue, knowledge of how such small scale change affects the spatial distribution and abundances of motile fauna remains limited. The present study investigated fish and macro faunal community response patterns to a range of habitat variables (shoot length, cover and density), including individual species habitat preferences within a disturbed and patchy intertidal seagrass meadow. Multivariate analysis showed a measurable effect of variable seagrass cover on the abundance and distribution of the fauna, with species specific preferences to both high and low seagrass cover seagrass. The faunal community composition varied significantly with increasing/decreasing cover. The faunal species composition of low cover seagrass was more similar to sandy control plots than to higher cover seagrass. Shannon Wiener Diversity (H′) and species richness was significantly higher in high cover seagrass than in low cover seagrass, indicating increasing habitat value as density increases. The results of this study underline how the impacts of small scale disturbances from factors such as anchor damage, boat moorings and intertidal vehicle use on seagrass meadows that reduce shoot density and cover can impact upon associated fauna. These impacts have negative consequences for the delivery of ecosystem services such as the provision of nursery habitat

    Copy Number Variation Shapes Genome Diversity in Arabidopsis Over Immediate Family Generational Scales

    Get PDF
    Arabidopsis thaliana is the model plant and is grown worldwide by plant biologists seeking to dissect the molecular underpinning of plant growth and development. Gene copy number variation (CNV) is a common form of genome natural diversity that is currently poorly studied in plants and may have broad implications for model organism research, evolutionary biology, and crop science. Herein, comparative genomic hybridization (CGH) was used to identify and interrogate regions of gene CNV across the A. thaliana genome. A common temperature condition used for growth of A. thaliana in our laboratory and many around the globe is 22 °C. The current study sought to test whether A. thaliana, grown under different temperature (16 and 28 °C) and stress regimes (salicylic acid spray) for five generations, selecting for fecundity at each generation, displayed any differences in CNV relative to a plant lineage growing under normal conditions. Three siblings from each alternative temperature or stress lineage were also compared with the reference genome (22 °C) by CGH to determine repetitive and nonrepetitive CNVs. Findings document exceptional rates of CNV in the genome of A. thaliana over immediate family generational scales. A propensity for duplication and nonrepetitive CNVs was documented in 28 °C CGH, which was correlated with the greatest plant stress and infers a potential CNV–environmental interaction. A broad diversity of gene species were observed within CNVs, but transposable elements and biotic stress response genes were notably overrepresented as a proportion of total genes and genes initiating CNVs. Results support a model whereby segmental CNV and the genes encoded within these regions contribute to adaptive capacity of plants through natural genome variation

    Competition-Colonization Trade-Offs, Competitive Uncertainty, and the Evolutionary Assembly of Species

    Get PDF
    We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species
    • …
    corecore