154 research outputs found

    Time Variability in Simulated Ultracompact and Hypercompact HII Regions

    Get PDF
    Ultracompact and hypercompact HII regions appear when a star with a mass larger than about 15 solar masses starts to ionize its own environment. Recent observations of time variability in these objects are one of the pieces of evidence that suggest that at least some of them harbor stars that are still accreting from an infalling neutral accretion flow that becomes ionized in its innermost part. We present an analysis of the properties of the HII regions formed in the 3D radiation-hydrodynamic simulations presented by Peters et al. as a function of time. Flickering of the HII regions is a natural outcome of this model. The radio-continuum fluxes of the simulated HII regions, as well as their flux and size variations are in agreement with the available observations. From the simulations, we estimate that a small but non-negligible fraction (~ 10 %) of observed HII regions should have detectable flux variations (larger than 10 %) on timescales of ~ 10 years, with positive variations being more likely to happen than negative variations. A novel result of these simulations is that negative flux changes do happen, in contrast to the simple expectation of ever growing HII regions. We also explore the temporal correlations between properties that are directly observed (flux and size) and other quantities like density and ionization rates.Comment: Monthly Notices of the Royal Astronomical Society, in press. The movie of free-free optical depth can be found at http://www.ita.uni-heidelberg.de/~tpeters/tau.av

    Ten Million Degree Gas in M 17 and the Rosette Nebula: X-ray Flows in Galactic H II Regions

    Full text link
    We present the first high-spatial-resolution X-ray images of two high-mass star forming regions, the Omega Nebula (M 17) and the Rosette Nebula (NGC 2237--2246), obtained with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) instrument. The massive clusters powering these H II regions are resolved at the arcsecond level into >900 (M 17) and >300 (Rosette) stellar sources similar to those seen in closer young stellar clusters. However, we also detect soft diffuse X-ray emission on parsec scales that is spatially and spectrally distinct from the point source population. The diffuse emission has luminosity L_x ~ 3.4e33 ergs/s in M~17 with plasma energy components at kT ~0.13 and ~0.6 keV (1.5 and 7 MK), while in Rosette it has L_x \~6e32 ergs/s with plasma energy components at kT ~0.06 and ~0.8 keV (0.7 and 9 MK). This extended emission most likely arises from the fast O-star winds thermalized either by wind-wind collisions or by a termination shock against the surrounding media. We establish that only a small portion of the wind energy and mass appears in the observed diffuse X-ray plasma; in these blister H II regions, we suspect that most of it flows without cooling into the low-density interstellar medium. These data provide compelling observational evidence that strong wind shocks are present in H II regions.Comment: 35 pages, including 11 figures; to appear in ApJ, August 20, 2003. A version with high-resolution figures is available at ftp://ftp.astro.psu.edu/pub/townsley/diffuse.ps.g

    Dispersal of molecular clouds by ionising radiation

    Full text link
    The role of feedback from massive stars is believed to be a key element in the evolution of molecular clouds. We use high-resolution 3D SPH simulations to explore the dynamical effects of a single O7 star located at the centre of a molecular cloud with mass 10^4M_sun and radius 6.4pc. The initial internal structure of the cloud is characterised by its fractal dimension, D=2.0 - 2.8, and its log-normal density PDF. (i) As regards star formation, in the short term ionising feedback is positive, in the sense that star formation occurs much more quickly in gas that is compressed by the high pressure of the ionised gas. However, in the long term ionising feedback is negative, in the sense that most of the cloud is dispersed with an outflow rate of up to ~0.01M_sun/yr, on a timescale comparable with the sound-crossing time for the ionised gas (~1-2Myr), and triggered star formation is therefore limited to a few percent of the cloud's mass. (ii) As regards the morphology of the ionisation fronts (IFs) bounding the HII region and the systematics of outflowing gas, we distinguish two regimes. For low D<=2.2, the initial cloud is dominated by large-scale structures, so the neutral gas tends to be swept up into a few extended coherent shells, and the ionised gas blows out through a few large holes between these shells; we term these HII regions "shell-dominated". Conversely, for high D>=2.6, the initial cloud is dominated by small-scale structures, and these are quickly overrun by the advancing IF, thereby producing neutral pillars whilst the ionised gas blows out through a large number of small holes between the pillars; we term these HII regions "pillar-dominated". (iii) As regards the injection of bulk kinetic energy, by ~1Myr, the expansion of the HII region has delivered a rms velocity of ~6km/s; this represents less than 0.1% of the total energy radiated by the O7 star.Comment: 13 pages, 8 figures, 2 tables; submitted to MNRA

    Numerical heat conduction in hydrodynamical models of colliding hypersonic flows

    Full text link
    Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-heat gas via sub-shocks as it flows downstream. The resulting reduction in the surface area between adjacent flows, and therefore of the amount of numerical conduction, leads to a commensurate reduction in spurious X-ray emission, though the dynamics of the collision are compromised. The simulation resolution also affects the degree of numerical conduction. A finer resolution better resolves the interfaces of high density and temperature contrast and although numerical conduction still exists the volume of affected gas is considerably reduced. However, since it is not always practical to increase the resolution, it is imperative that the degree of numerical conduction is understood so that inaccurate interpretations can be avoided. This work has implications for the dynamics and emission from astrophysical phenomena which involve high Mach number shocks.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Human immunodeficiency virus: 25 years of diagnostic and therapeutic strategies and their impact on hepatitis B and C virus

    Get PDF
    The human immunodeficiency virus (HIV) had spread unrecognized in the human population as sexually transmitted disease and was finally identified by its disease AIDS in 1981. Even after the isolation of the causative agent in 1983, the burden and death rate of AIDS accelerated worldwide especially in young people despite the confection of new drugs capable to inhibit virus replication since 1997. However, at least in industrialised countries, this trend could be reversed by the introduction of combination therapy strategies. The design of new drugs is on going; besides the inhibition of the three enzymes of HIV for replication and maturation (reverse transcriptase, integrase and protease), further drugs inhibits fusion of viral and cellular membranes and virus maturation. On the other hand, viral diagnostics had been considerably improved since the emergence of HIV. There was a need to identify infected people correctly, to follow up the course of immune reconstitution of patients by measuring viral load and CD4 cells, and to analyse drug escape mutations leading to drug resistance. Both the development of drugs and the refined diagnostics have been transferred to the treatment of patients infected with hepatitis B virus (HBV) and hepatitis C virus (HCV). This progress is not completed; there are beneficial aspects in the response of the scientific community to the HIV burden for the management of other viral diseases. These aspects are described in this contribution. Further aspects as handling a stigmatising disease, education of self-responsiveness within sexual relationships, and ways for confection of a protective vaccine are not covered

    Solution Structures of the Acyl Carrier Protein Domain from the Highly Reducing Type I Iterative Polyketide Synthase CalE8

    Get PDF
    Biosynthesis of the enediyne natural product calicheamicins γ1I in Micromonospora echinospora ssp. calichensis is initiated by the iterative polyketide synthase (PKS) CalE8. Recent studies showed that CalE8 produces highly conjugated polyenes as potential biosynthetic intermediates and thus belongs to a family of highly-reducing (HR) type I iterative PKSs. We have determined the NMR structure of the ACP domain (meACP) of CalE8, which represents the first structure of a HR type I iterative PKS ACP domain. Featured by a distinct hydrophobic patch and a glutamate-residue rich acidic patch, meACP adopts a twisted three-helix bundle structure rather than the canonical four-helix bundle structure. The so-called ‘recognition helix’ (α2) of meACP is less negatively charged than the typical type II ACPs. Although loop-2 exhibits greater conformational mobility than other regions of the protein with a missing short helix that can be observed in most ACPs, two bulky non-polar residues (Met992, Phe996) from loop-2 packed against the hydrophobic protein core seem to restrict large movement of the loop and impede the opening of the hydrophobic pocket for sequestering the acyl chains. NMR studies of the hydroxybutyryl- and octanoyl-meACP confirm that meACP is unable to sequester the hydrophobic chains in a well-defined central cavity. Instead, meACP seems to interact with the octanoyl tail through a distinct hydrophobic patch without involving large conformational change of loop-2. NMR titration study of the interaction between meACP and the cognate thioesterase partner CalE7 further suggests that their interaction is likely through the binding of CalE7 to the meACP-tethered polyene moiety rather than direct specific protein-protein interaction

    How to move ionized gas: an introduction to the dynamics of HII regions

    Full text link
    This review covers the dynamic processes that are important in the evolution and structure of galactic HII regions, concentrating on an elementary presentation of the physical concepts and recent numerical simulations of HII region evolution in a non-uniform medium. The contents are as follows: (1) The equations (Euler equations; Radiative transfer; Rate equations; How to avoid the dynamics; How to avoid the atomic physics). (2) Physical concepts (Static photoionization equilibrium; Ionization front propagation; Structure of a D-type front; Photoablation flows; Other ingredients - Stellar winds, Radiation pressure, Magnetic fields, Instabilities). (3) HII region evolution (Early phases: hypercompact and ultracompact regions; Later phases: compact and extended regions; Clumps and turbulence).Comment: To be published as a chapter in 'Diffuse Matter from Star Forming Regions to Active Galaxies' - A volume Honouring John Dyson. Eds. T. W. Harquist, J. M. Pittard and S. A. E. G. Falle. 25 pages, 7 figures. Some figures degraded to meet size restriction. Full-resolution version available at http://www.ifront.org/wiki/Dyson_Festschrift_Chapte

    Island survivors: population genetic structure and demography of the critically endangered giant lizard of La Gomera, Gallotia bravoana

    Get PDF
    Background: The giant lizard of La Gomera (Gallotia bravoana), is an endemic lacertid of this Canary Island that lives confined to a very restricted area of occupancy in a steep cliff, and is catalogued as Critically Endangered by IUCN. We present the first population genetic analysis of the wild population as well as of captive-born individuals (for which paternity data are available) from a recovery center. Current genetic variability, and inferred past demographic changes were determined in order to discern the relative contribution of natural versus human-mediated effects on the observed decline in population size. Results: Genetic analyses indicate that the only known natural population of the species shows low genetic diversity and acts as a single evolutionary unit. Demographic analyses inferred a prolonged decline of the species for at least 230 generations. Depending on the assumed generation time, the onset of the decline was dated between 1200-13000 years ago. Pedigree analyses of captive individuals suggest that reproductive behavior of the giant lizard of La Gomera may include polyandry, multiple paternity and female long-term sperm retention. Conclusions: The current low genetic diversity of G. bravoana is the result of a long-term gradual decline. Because generation time is unknown in this lizard and estimates had large credibility intervals, it is not possible to determine the relative contribution of humans in the collapse of the population. Shorter generation times would favor a stronger influence of human pressure whereas longer generation times would favor a climate-induced origin of the decline. In any case, our analyses show that the wild population has survived for a long period of time with low levels of genetic diversity and a small effective population size. Reproductive behavior may have acted as an important inbreeding avoidance mechanism allowing the species to elude extinction. Overall, our results suggest that the species retains its adaptive potential and could restore its ancient genetic diversity under favorable conditions. Therefore, management of the giant lizard of La Gomera should concentrate efforts on enhancing population growth rates through captive breeding of the species as well as on restoring the carrying capacity of its natural habitat.Spanish Ministry of Education; European Life Project [LIFE 02 NAT-E-008614]; Ministerio de Ciencia e Innovacion [REN 2001- 1514/GLO, CGL 2010-18216]info:eu-repo/semantics/publishedVersio
    corecore