9 research outputs found

    Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles

    Get PDF
    RNA editing at the Q/R site near the apex of the pore loop of AMPA and kainate receptors controls a diverse array of channel properties, including ion selectivity and unitary conductance and susceptibility to inhibition by polyamines and cis-unsaturated fatty acids, as well as subunit assembly into tetramers and regulation by auxiliary subunits. How these different aspects of channel function are all determined by a single amino acid substitution remains poorly understood; however, several lines of evidence suggest that interaction between the pore helix (M2) and adjacent segments of the transmembrane inner (M3) and outer (M1) helices may be involved. In the present study, we have used double mutant cycle analysis to test for energetic coupling between the Q/R site residue and amino acid side chains along the M3 helix. Our results demonstrate interaction with several M3 locations and particularly strong coupling to substitution for L614 at the level of the central cavity. In this location, replacement with smaller side chains completely and selectively reverses the effect of fatty acids on gating of edited channels, converting strong inhibition of wild-type GluK2(R) to nearly 10-fold potentiation of GluK2(R) L614A

    Functional complementation of Glra1spd-ot, a glycine receptor subunit mutant, by independently expressed C-terminal domains

    No full text
    The oscillator mouse (Glra1spd-ot) carries a 9 bp microdeletion plus a 2 bp microinsertion in the glycine receptor α1 subunit gene, resulting in the absence of functional α1 polypeptides from the CNS and lethality 3 weeks after birth. Depending on differential use of two splice acceptor sites in exon 9 of the Glra1 gene, the mutant allele encodes either a truncated α1 subunit (spdot-trc) or a polypeptide with a C-terminal missense sequence (spdot-elg). During recombinant expression, both splice variants fail to form ion channels. In complementation studies, a tail construct, encoding the deleted C-terminal sequence, was coexpressed with both mutants. Coexpression with spdot-trc produced glycine-gated ion channels. Rescue efficiency was increased by inclusion of the wild-type motif RRKRRH. In cultured spinal cord neurons from oscillator homozygotes, viral infection with recombinant C-terminal tail constructs resulted in appearance of endogenous α1 antigen. The functional rescue of α1 mutants by the C-terminal tail polypeptides argues for a modular subunit architecture of members of the Cys-loop receptor family

    Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy

    No full text
    Cell signaling is often mediated by the binding of multiple ligands to a multi-subunit receptor. The probabilistic nature and slow rate of binding of diffusible ligands at low concentrations can impede attempts to determine how ligand occupancy controls signaling in such protein complexes. We describe a solution to this problem that uses a photoswitched tethered ligand as a “ligand clamp” to induce rapid and stable binding and unbinding at defined subsets of subunits. We applied the approach to study gating in ionotropic glutamate receptors (iGluRs), ligand-gated ion channels that mediate excitatory neurotransmission and plasticity at glutamatergic synapses in the brain. We probed gating in two kainate-type iGluRs, GluK2 homotetramers and GluK2/GluK5 heterotetramers. Ultrafast (sub-millisecond) photoswitching of an azobenzene-based ligand on specific subunits provided a real-time measure of gating and revealed that partially occupied receptors can activate without desensitizing. The findings have implications for signaling by locally released and spillover glutamate

    Trafficking of Kainate Receptors

    No full text
    Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain elusive until now. Especially the precise pre-, extra-, and postsynaptic localization of KARs plays a critical role for neuronal function, as an unbalanced localization of KARs would ultimately lead to dysregulated neuronal excitability. Recently, important advances in the understanding of the regulation of surface expression, function, and agonist-dependent endocytosis of KARs have been achieved. Post-translational modifications like PKC-mediated phosphorylation and SUMOylation have been reported to critically influence surface expression and endocytosis, while newly discovered auxiliary proteins were shown to shape the functional properties of KARs
    corecore