54 research outputs found

    Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation

    Get PDF
    Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance

    Catalysis of serine and tyrosine autophosphorylation by the human insulin receptor.

    No full text
    The protein kinase activity of human insulin receptors purified from Sf9 insect cells after infection with a recombinant baculovirus was evaluated. The following experimental observations led to the unexpected conclusion that this receptor protein catalyzes both serine and tyrosine autophosphorylation at significant stoichiometries. (i) Phosphorylation of lectin-purified insulin receptors with [gamma-32P]ATP resulted in rapid receptor tyrosine phosphorylation (7 mol of P per high-affinity binding site) and the delayed onset of insulin-stimulated receptor serine phosphorylation (about 7% of total phosphorylation). The tyrosine kinase inhibitor (hydroxy-2-naphthalenylmethyl)phosphonic acid (HNMPA), which has no effect on protein kinase C or cyclic AMP-dependent protein kinase activities, inhibited both the receptor serine and tyrosine phosphorylation. (ii) Phosphorylation of a synthetic peptide substrate composed of insulin receptor residues 1290-1319 on serines-1305/1306 by partially purified insulin receptors was also inhibited by HNMPA. (iii) Insulin receptors sequentially affinity-purified on immobilized wheat germ agglutinin and immobilized insulin showed no apparent contaminant proteins on silver-stained SDS/polyacrylamide gels yet catalyzed autophosphorylation on receptor serine and tyrosine residues when incubated with [gamma-32P]ATP. These results suggest that the catalytic site of the insulin receptor tyrosine kinase also recognizes receptor serine residues as substrates for the phosphotransfer reaction. Furthermore, insulin-stimulated receptor serine phosphorylation in intact cells may occur in part by an autophosphorylation mechanism subsequent to tyrosine phosphorylation of the insulin receptor
    corecore