5,916 research outputs found

    Directed self-organization of graphene nanoribbons on SiC

    Full text link
    Realization of post-CMOS graphene electronics requires production of semiconducting graphene, which has been a labor-intensive process. We present tailoring of silicon carbide crystals via conventional photolithography and microelectronics processing to enable templated graphene growth on 4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes. This allows self-organized growth of graphene nanoribbons with dimensions defined by those of the facet. Preferential growth is confirmed by Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements, and electrical characterization of prototypic graphene devices is presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2 SiC chip demonstrates scalability of this process and represents the highest density of graphene devices reported to date.Comment: 13 pages, 5 figure

    Exploring the structural basis of conformational heterogeneity and autoinhibition of human cGMP-specific protein kinase Iα through computational modelling and molecular dynamics simulations.

    Get PDF
    Protein kinase Iα (PKGIα) is a pivotal cyclic guanosine monophosphate (cGMP) signalling protein. Major steps related to the structural plasticity of PKGIα have been inferred but the structural aspects of the auto-inhibition and multidomain tertiary organization of human PKGIα in active and inactive form are not clear. Here we combine computational comparative modelling, protein-protein docking and molecular dynamics (MD) simulations to investigate structural details of the repressed state of the catalytic domain of PKGIα. Exploration of the potential inhibitory conformation of the auto-inhibitory domain (AI) within the catalytic cleft reveals that the pseudo-substrate motif binds with residues of the glycine rich loop and substrate-binding lobe. Dynamic changes as a result of coupling of the catalytic and AI domains are also investigated. The three-dimensional homodimeric models of PKGIα in the active and inactive state indicate that PKGIα in its inactive-state attains a compact globular structure where cyclic nucleotide binding (CNB-A/B) domains are buried, whereas the catalytic domains are inaccessible with their substrate-binding pockets facing the N-terminal of CNB-A. Contrary to this, the active-state model of PKGIα shows an extended conformation where CNB-A/B domains are slightly rearranged and the catalytic domains of homodimer flanking the C-terminal with their substrate binding lobes free to entrap downstream proteins. These findings are consistent with previously reported static images of the multidomain organization of PKGIα. Structural insights pertaining to the conformational heterogeneity and auto-inhibition of PKGIα provided in this study may help to understand the dynamics-driven effective regulation of PKGIα

    Spin-resolved Quantum Interference in Graphene

    Full text link
    The unusual electronic properties of single-layer graphene make it a promising material system for fundamental advances in physics, and an attractive platform for new device technologies. Graphene's spin transport properties are expected to be particularly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field. In order to test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum dot systems. The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.Comment: 12 pages, 4 figures, plus supplementary (11 pages, 9 figures

    Refugee and Migrant Women's Views of Antenatal Ultrasound on the Thai Burmese Border: A Mixed Methods Study

    Get PDF
    Antenatal ultrasound suits developing countries by virtue of its versatility, relatively low cost and safety, but little is known about women's or local provider's perspectives of this upcoming technology in such settings. This study was undertaken to better understand how routine obstetric ultrasound is experienced in a displaced Burmese population and identify barriers to its acceptance by local patients and providers.Qualitative (30 observations, 19 interviews, seven focus group discussions) and quantitative methods (questionnaire survey with 644 pregnant women) were used to provide a comprehensive understanding along four major themes: safety, emotions, information and communication, and unintended consequences of antenatal ultrasound in refugee and migrant clinics on the Thai Burmese border. One of the main concerns expressed by women was the danger of childbirth which they mainly attributed to fetal malposition. Both providers and patients recognized ultrasound as a technology improving the safety of pregnancy and delivery. A minority of patients experienced transitory shyness or anxiety before the ultrasound, but reported that these feelings could be ameliorated with improved patient information and staff communication. Unintended consequences of overuse and gender selective abortions in this population were not common.The results of this study are being used to improve local practice and allow development of explanatory materials for this population with low literacy. We strongly encourage facilities introducing new technology in resource poor settings to assess acceptability through similar inquiry

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    corecore