284 research outputs found

    Unexplained chronic liver disease in Ethiopia: a cross-sectional study

    Get PDF
    BACKGROUND: Hepatitis B virus (HBV) infection is assumed to be the major cause of chronic liver disease (CLD) in sub-Saharan Africa. The contribution of other aetiological causes of CLD is less well documented and hence opportunities to modulate other potential risk factors are being lost. The aims of this study were to explore the aetiological spectrum of CLD in eastern Ethiopia and to identify plausible underlying risk factors for its development. METHODS: A cross-sectional study was undertaken between April 2015 and April 2016 in two public hospitals in Harar, eastern Ethiopia. The study population comprised of consenting adults with clinical and radiological evidence of chronic liver disease. The baseline evaluation included: (i) a semi-structured interview designed to obtain information about the ingestion of alcohol, herbal medicines and local recreational drugs such as khat (Catha edulis); (ii) clinical examination; (iii) extensive laboratory testing; and, (iv) abdominal ultrasonography. RESULTS: One-hundred-and-fifty patients with CLD (men 72.0%; median age 30 [interquartile range 25-40] years) were included. CLD was attributed to chronic HBV infection in 55 (36.7%) individuals; other aetiological agents were identified in a further 12 (8.0%). No aetiological factors were identified in the remaining 83 (55.3%) patients. The overall prevalence of daily khat use was 78.0%, while alcohol abuse, defined as > 20 g/day in women and > 30 g/day in men, was rare (2.0%). Histological features of toxic liver injury were observed in a subset of patients with unexplained liver injury who underwent liver biopsy. CONCLUSION: The aetiology of CLD in eastern Ethiopia is largely unexplained. The widespread use of khat in the region, together with histopathological findings indicating toxic liver injury, suggests an association which warrants further investigation

    Unexplained chronic liver disease in Ethiopia: a cross-sectional study

    Get PDF
    Background: Hepatitis B virus (HBV) infection is assumed to be the major cause of chronic liver disease (CLD) in sub-Saharan Africa. The contribution of other aetiological causes of CLD is less well documented and hence opportunities to modulate other potential risk factors are being lost. The aims of this study were to explore the aetiological spectrum of CLD in eastern Ethiopia and to identify plausible underlying risk factors for its development. Methods: A cross-sectional study was undertaken between April 2015 and April 2016 in two public hospitals in Harar, eastern Ethiopia. The study population comprised of consenting adults with clinical and radiological evidence of chronic liver disease. The baseline evaluation included: (i) a semi-structured interview designed to obtain information about the ingestion of alcohol, herbal medicines and local recreational drugs such as khat (Catha edulis); (ii) clinical examination; (iii) extensive laboratory testing; and, (iv) abdominal ultrasonography. Results: One-hundred-and-fifty patients with CLD (men 72.0%; median age 30 [interquartile range 25–40] years) were included. CLD was attributed to chronic HBV infection in 55 (36.7%) individuals; other aetiological agents were identified in a further 12 (8.0%). No aetiological factors were identified in the remaining 83 (55.3%) patients. The overall prevalence of daily khat use was 78.0%, while alcohol abuse, defined as > 20 g/day in women and > 30 g/day in men, was rare (2.0%). Histological features of toxic liver injury were observed in a subset of patients with unexplained liver injury who underwent liver biopsy. Conclusion: The aetiology of CLD in eastern Ethiopia is largely unexplained. The widespread use of khat in the region, together with histopathological findings indicating toxic liver injury, suggests an association which warrants further investigation

    Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable Cystic Fibrosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T helper 17 (Th17) cells can recruit neutrophils to inflammatory sites through production of IL-17, which induces chemokine release. IL-23 is an important inducer of IL-17 and IL-22 production. Our aim was to study the role of Th17 cells in cystic fibrosis (CF) lung disease by measuring IL-17 protein and mRNA levels and IL-22 and IL-23 mRNA in sputum of clinically stable CF patients and by comparing these levels with healthy controls.</p> <p>Methods</p> <p>Sputum induction was performed in adult CF patients outside of an exacerbation and healthy control subjects. IL-17A protein levels were measured in supernatants with cytometric bead array (CBA) and RNA was isolated and quantitative RT-PCR was performed for IL-17A, IL-22 and IL-23.</p> <p>Results</p> <p>We found significantly higher levels of IL-17A protein and mRNA levels (both: p < 0.0001) and IL-23 mRNA levels (p < 0.0001) in the sputum of CF group as compared to controls. We found very low levels of IL-22 mRNA in the CF group. The levels of IL-17 and IL-23 mRNA were higher in patients chronically infected with <it>Pseudomonas aeruginosa </it>(<it>P. aeruginosa</it>) as compared to those who were not chronically infected with <it>P. aeruginosa</it>. The presence of <it>Staphylococcus aureus </it>(<it>S. aureus</it>) on sputum did not affect the IL-17 or IL-23 levels. There was no correlation between IL-17 or IL-23 levels and FEV<sub>1 </sub>nor sputum neutrophilia.</p> <p>Conclusion</p> <p>The elevated levels of IL-17 and IL-23 might indicate that Th17 cells are implicated in the persistent neutrophil infiltration in CF lung disease and chronic infection with <it>P. aeruginosa</it>.</p

    Assessing circadian rhythms in propofol PK and PD during prolonged infusion in ICU patients

    Get PDF
    This study evaluates possible circadian rhythms during prolonged propofol infusion in patients in the intensive care unit. Eleven patients were sedated with a constant propofol infusion. The blood samples for the propofol assay were collected every hour during the second day, the third day, and after the termination of the propofol infusion. Values of electroencephalographic bispectral index (BIS), arterial blood pressure, heart rate, blood oxygen saturation and body temperature were recorded every hour at the blood collection time points. A two-compartment model was used to describe propofol pharmacokinetics. Typical values of the central and peripheral volume of distribution and inter-compartmental clearance were VC = 27.7 l, VT = 801 l, and CLD = 2.73 l/min. The systolic blood pressure (SBP) was found to influence the propofol metabolic clearance according to Cl (l/min) = 2.65·(1 − 0.00714·(SBP − 135)). There was no significant circadian rhythm detected with respect to propofol pharmacokinetics. The BIS score was assessed as a direct effect model with EC50 equal 1.98 mg/l. There was no significant circadian rhythm detected within the BIS scores. We concluded that the light–dark cycle did not influence propofol pharmacokinetics and pharmacodynamics in intensive care units patients. The lack of night–day differences was also noted for systolic blood pressure, diastolic blood pressure and blood oxygenation. Circadian rhythms were detected for heart rate and body temperature, however they were severely disturbed from the pattern of healthy patients

    Cerebellum Abnormalities in Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizures Revealed by Diffusion Tensor Imaging

    Get PDF
    Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS

    Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian (Hungarian) sample

    Get PDF
    BACKGROUND: Hypoxia inducible factor-1 alpha (HIF-1alpha) is a transcription factor that plays an important role in neo-vascularisation, embryonic pancreas beta-cell mass development, and beta cell protection. Recently a non synonymous single nucleotide polymorphism (g.C45035T SNP, rs11549465) of HIF-1alpha gene, resulting in the p.P582S amino acid change has been shown to be associated with type 2 diabetes (T2DM) in a Japanese population. Our aim was to replicate these findings on a Caucasian (Hungarian) population, as well as to study whether this genetic effect is restricted to T2DM or can be expanded to diabetes in general. METHODS: A large Caucasian sample (N = 890) was recruited including 370 T2DM, 166 T1DM and 354 healthy subjects. Genotyping was validated by two independent methods: a restriction fragment analysis (RFLP) and a real time PCR using TaqMan probes. An overestimation of heterozygotes by RFLP was observed as a consequence of a nearby SNP (rs34005929). Therefore genotyping results of the justified TaqMan system were accepted. The measured genotype distribution corresponded to Hardy-Weinberg equilibrium (P = 0.740) RESULTS: As the TT genotype was extremely rare in the population (0.6% in clinical sample and 2.5% in controls), the genotypes were grouped as T absent (CC) and T present (CT and TT). Genotype-wise analysis showed a significant increase of T present group in controls (24.0%) as compared to patients (16.8%, P = 0.008). This genetic effect was demonstrated in the separated samples of type 1 (15.1%, P = 0.020), and also in type 2 (17.6%, P = 0.032) diabetes. Allele-wise analysis gave identical results showing a higher frequency of the T allele in the control sample (13.3%) than in the clinical sample (8.7%, P = 0.002) with similar results in type 1 (7.8%, P = 0.010) and type 2 (9.1%, P = 0.011) diabetes. The odds ratio for diabetes (either type 1 or 2) was 1.56 in the presence of the C allele. CONCLUSION: We confirmed the protective effect of a rare genetic variant of HIF-1alpha gene against type 2 diabetes in a Caucasian sample. Moreover we demonstrated a genetic contribution of the same polymorphism in type 1 diabetes as well, supporting a possible overlap in pathomechanism for T2DM and a T1DM

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore