149 research outputs found

    Phylogenetic Position of a Copper Age Sheep (Ovis aries) Mitochondrial DNA

    Get PDF
    BACKGROUND: Sheep (Ovis aries) were domesticated in the Fertile Crescent region about 9,000-8,000 years ago. Currently, few mitochondrial (mt) DNA studies are available on archaeological sheep. In particular, no data on archaeological European sheep are available. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the first portion of mtDNA sequence of a Copper Age European sheep. DNA was extracted from hair shafts which were part of the clothes of the so-called Tyrolean Iceman or Γ–tzi (5,350-5,100 years before present). Mitochondrial DNA (a total of 2,429 base pairs, encompassing a portion of the control region, tRNA(Phe), a portion of the 12S rRNA gene, and the whole cytochrome B gene) was sequenced using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products. We have compared the sequence with the corresponding sequence of 334 extant lineages. CONCLUSIONS/SIGNIFICANCE: A phylogenetic network based on a new cladistic notation for the mitochondrial diversity of domestic sheep shows that the Γ–tzi's sheep falls within haplogroup B, thus demonstrating that sheep belonging to this haplogroup were already present in the Alps more than 5,000 years ago. On the other hand, the lineage of the Γ–tzi's sheep is defined by two transitions (16147, and 16440) which, assembled together, define a motif that has not yet been identified in modern sheep populations

    Genetic variation in autophagy-related genes influences the risk and phenotype of Buruli ulcer

    Get PDF
    Introduction Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Objective Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Methods Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. Results The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Conclusion Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.The research leading to these results received funding from the Health Services of the Fundação Calouste Gulbenkian under the grant Proc.NΒ°94776 LJ; from the Fundação para a CiΓͺncia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2β€”O Novo 267 Norte); from the Quadro de ReferΓͺncia EstratΓ©gico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto EstratΓ©gico – LA 26 – 2013–2014 (PEst-C/SAU/LA0026/2013). JFM received an individual QREN fellowship (UMINHO/BPD/14/2014); CCu and AGF received an individual FCT fellowship (SFRH/BPD/96176/2013 and SFRH/BPD/68547/2010, respectively); and AC received an FCT contract (IF/00735/2014). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation

    Get PDF
    In humans, allelic variants in Toll-like receptors (TLRs) associate with several pathologies. However, the underlying cellular and molecular mechanisms of this association remain largely unknown. Analysis of the human TLR9 promoter revealed that the C allele of the rs5743836 polymorphism generates several regulatory sites, including an IL-6-responding element. Here, we show that, in mononuclear cells carrying the TC genotype of rs5743836, IL-6 up-regulates TLR9 expression, leading to exacerbated cellular responses to CpG, including IL-6 production and B-cell proliferation. Our study uncovers a role for the rs5743836 polymorphism in B-cell biology with implications on TLR9-mediated diseases and on the therapeutic usage of TLR9 agonists/antagonists

    A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis

    Get PDF
    The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2βˆ’/βˆ’ mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2βˆ’/βˆ’ mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2βˆ’/βˆ’ mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS

    Corticosteroid-Induced Immunosuppression ultimately does not compromise the efficacy of antibiotherapy in murine mycobacterium ulcerans Infection

    Get PDF
    Buruli ulcer (BU) is a necrotizing disease of the skin, subcutaneous tissue and bone caused by Mycobacterium ulcerans. It has been suggested that the immune response developed during the recommended rifampicin/streptomycin (RS) antibiotherapy is protective, contributing to bacterial clearance. On the other hand, paradoxical reactions have been described during or after antibiotherapy, characterized by pathological inflammatory responses. This exacerbated inflammation could be circumvented by immunosuppressive drugs. Therefore, it is important to clarify if the immune system contributes to bacterial clearance during RS antibiotherapy and if immunosuppression hampers the efficacy of the antibiotic regimen. METHODOLOGY/PRINCIPAL FINDINGS: We used the M. ulcerans infection footpad mouse model. Corticosteroid-induced immunosuppression was achieved before experimental infection and maintained during combined RS antibiotherapy by the administration of dexamethasone (DEX). Time-lapsed analyses of macroscopic lesions, bacterial burdens, histology and immunohistochemistry were performed in M. ulcerans-infected footpads. We show here that corticosteroid-immunosuppressed mice are more susceptible to M. ulcerans, with higher bacterial burdens and earlier ulceration. Despite this, macroscopic lesions remised during combined antibiotic/DEX treatment and no viable bacteria were detected in the footpads after RS administration. This was observed despite a delayed kinetics in bacterial clearance, associated with a local reduction of T cell and neutrophil numbers, when compared with immunocompetent RS-treated mice. In addition, no relapse was observed following an additional 3 month period of DEX administration. CONCLUSIONS/SIGNIFICANCE: These findings reveal a major role of the RS bactericidal activity for the resolution of M. ulcerans experimental infections even during immunosuppression, and support clinical investigation on the potential use of corticosteroids or other immunosuppressive/anti-inflammatory drugs for the management of BU patients undergoing paradoxical reactions.This work was supported by a grant from the Health Services of Fundação Calouste Gulbenkian, and the Portuguese Science and Technology Foundation (FCT) fellowships SFRH/BD/41598/2007, SFRH/BPD/64032/2009, SFRH/BPD/68547/2010 and SFRH/BD/33573/2009 to TGM, GT, AGF, and JBG, respectively. MS is a CiΓͺncia 2007 fello

    Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination

    Get PDF
    BACKGROUND: Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-gamma T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-gamma and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. CONCLUSIONS/SIGNIFICANCE: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised

    Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model

    Get PDF
    Author Summary: Buruli Ulcer (BU), caused by Mycobacterium ulcerans, is a necrotizing disease of the skin, subcutaneous tissue and bone. Standard treatment of BU patients consists of a combination of the antibiotics rifampicin and streptomycin for 8 weeks. However, in advanced stages of the disease, surgical resection of the destroyed skin is still required. The use of bacterial viruses (bacteriophages) for the control of bacterial infections has been considered as an alternative or a supplement to antibiotic chemotherapy. By using a mouse model of M. ulcerans footpad infection, we show that mice treated with a single subcutaneous injection of the mycobacteriophage D29 present decreased footpad pathology associated with a reduction of the bacterial burden. In addition, D29 treatment induced increased levels of IFN-Ξ³ and TNF in M. ulcerans -infected footpads, correlating with a predominance of a mononuclear infiltrate. These findings suggest the potential use of phage therapy in BU, as a novel therapeutic approach against this disease, particularly in advanced stages where bacteria are found primarily in an extracellular location in the subcutaneous tissue, and thus immediately accessible by lytic phages.This work was supported by a grant from the Health Services of Fundacao Calouste Gulbenkian, and the Portuguese Science and Technology Foundation (FCT) fellowships SFRH/BPD/64032/2009, SFRH/BD/41598/2007, and SFRH/BPD/68547/2010 to GT, TGM, and AGF, respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders

    Get PDF
    Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients
    • …
    corecore