1,301 research outputs found

    Diet tracing in ecology: Method comparison and selection

    Get PDF
    1. Determining diet is a key prerequisite for understanding species interactions, food web structure and ecological dynamics. In recent years, there has been considerable development in both the methodology and application of novel and more traditional dietary tracing methods, yet there is no comprehensive synthesis that systematically and quantitatively compares among the different approaches. 2. Here we conceptualize diet tracing in ecology, provide recommendations for method selection, and illustrate the advantages of method integration. We summarize empirical evidence on how different methods quantify diet mixtures, by contrasting estimates of dietary proportions from multiple methods applied to the same consumer-resource datasets, or from experimental studies with known diet compositions. 3. Our data synthesis revealed an urgent need for more experiential comparisons among the dietary methods. The comparison of diet quantifications from field observations showed that different techniques aligned well in cases with less than six diet items, but diverged considerably when applied to more complex diet mixtures. 4. Efforts are ongoing to further advance dietary estimation, including how reliably compound specific stable isotope analyses and fatty acid profiles can quantify more prey items than bulk stable isotope analyses. Similarly, DNA analyses, which can depict trophic interactions at a higher resolution than any other methods, are generating new ways to better quantify diets and differentiate among life-stages of prey. Such efforts, combined with more empirical testing of each dietary method and establishment of open data repositories for dietary data, promise to greatly advance community and ecosystem ecology

    Training in childhood obesity management in the United States: a survey of pediatric, internal medicine-pediatrics and family medicine residency program directors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information about the availability and effectiveness of childhood obesity training during residency is limited.</p> <p>Methods</p> <p>We surveyed residency program directors from pediatric, internal medicine-pediatrics (IM-Peds), and family medicine residency programs between September 2007 and January 2008 about childhood obesity training offered in their programs.</p> <p>Results</p> <p>The response rate was 42.2% (299/709) and ranged by specialty from 40.1% to 45.4%. Overall, 52.5% of respondents felt that childhood obesity training in residency was extremely important, and the majority of programs offered training in aspects of childhood obesity management including prevention (N = 240, 80.3%), diagnosis (N = 282, 94.3%), diagnosis of complications (N = 249, 83.3%), and treatment (N = 242, 80.9%). However, only 18.1% (N = 54) of programs had a formal childhood obesity curriculum with variability across specialties. Specifically, 35.5% of IM-Peds programs had a formal curriculum compared to only 22.6% of pediatric and 13.9% of family medicine programs (p < 0.01). Didactic instruction was the most commonly used training method but was rated as only somewhat effective by 67.9% of respondents using this method. The most frequently cited significant barrier to implementing childhood obesity training was competing curricular demands (58.5%).</p> <p>Conclusions</p> <p>While most residents receive training in aspects of childhood obesity management, deficits may exist in training quality with a minority of programs offering a formal childhood obesity curriculum. Given the high prevalence of childhood obesity, a greater emphasis should be placed on development and use of effective training strategies suitable for all specialties training physicians to care for children.</p

    Enhanced presentation of MHC class Ia, Ib and class II-restricted peptides encapsulated in biodegradable nanoparticles: a promising strategy for tumor immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many peptide-based cancer vaccines have been tested in clinical trials with a limited success, mostly due to difficulties associated with peptide stability and delivery, resulting in inefficient antigen presentation. Therefore, the development of suitable and efficient vaccine carrier systems remains a major challenge.</p> <p>Methods</p> <p>To address this issue, we have engineered polylactic-co-glycolic acid (PLGA) nanoparticles incorporating: (i) two MHC class I-restricted clinically-relevant peptides, (ii) a MHC class II-binding peptide, and (iii) a non-classical MHC class I-binding peptide. We formulated the nanoparticles utilizing a double emulsion-solvent evaporation technique and characterized their surface morphology, size, zeta potential and peptide content. We also loaded human and murine dendritic cells (DC) with the peptide-containing nanoparticles and determined their ability to present the encapsulated peptide antigens and to induce tumor-specific cytotoxic T lymphocytes (CTL) <it>in vitro</it>.</p> <p>Results</p> <p>We confirmed that the nanoparticles are not toxic to either mouse or human dendritic cells, and do not have any effect on the DC maturation. We also demonstrated a significantly enhanced presentation of the encapsulated peptides upon internalization of the nanoparticles by DC, and confirmed that the improved peptide presentation is actually associated with more efficient generation of peptide-specific CTL and T helper cell responses.</p> <p>Conclusion</p> <p>Encapsulating antigens in PLGA nanoparticles offers unique advantages such as higher efficiency of antigen loading, prolonged presentation of the antigens, prevention of peptide degradation, specific targeting of antigens to antigen presenting cells, improved shelf life of the antigens, and easy scale up for pharmaceutical production. Therefore, these findings are highly significant to the development of synthetic vaccines, and the induction of CTL for adoptive immunotherapy.</p

    A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inability of aspirin (ASA) to adequately suppress platelet aggregation is associated with future risk of coronary artery disease (CAD). Heritability studies of agonist-induced platelet function phenotypes suggest that genetic variation may be responsible for ASA responsiveness. In this study, we leverage independent information from genome-wide linkage and association data to determine loci controlling platelet phenotypes before and after treatment with ASA.</p> <p>Methods</p> <p>Clinical data on 37 agonist-induced platelet function phenotypes were evaluated before and after a 2-week trial of ASA (81 mg/day) in 1231 European American and 846 African American healthy subjects with a family history of premature CAD. Principal component analysis was performed to minimize the number of independent factors underlying the covariance of these various phenotypes. Multi-point sib-pair based linkage analysis was performed using a microsatellite marker set, and single-SNP association tests were performed using markers from the Illumina 1 M genotyping chip from deCODE Genetics, Inc. All analyses were performed separately within each ethnic group.</p> <p>Results</p> <p>Several genomic regions appear to be linked to ASA response factors: a 10 cM region in African Americans on chromosome 5q11.2 had several STRs with suggestive (p-value < 7 × 10<sup>-4</sup>) and significant (p-value < 2 × 10<sup>-5</sup>) linkage to post aspirin platelet response to ADP, and ten additional factors had suggestive evidence for linkage (p-value < 7 × 10<sup>-4</sup>) to thirteen genomic regions. All but one of these factors were aspirin <it>response </it>variables. While the strength of genome-wide SNP association signals for factors showing evidence for linkage is limited, especially at the strict thresholds of genome-wide criteria (N = 9 SNPs for 11 factors), more signals were considered significant when the association signal was weighted by evidence for linkage (N = 30 SNPs).</p> <p>Conclusions</p> <p>Our study supports the hypothesis that platelet phenotypes in response to ASA likely have genetic control and the combined approach of linkage and association offers an alternative approach to prioritizing regions of interest for subsequent follow-up.</p

    Age-prioritized use of antivirals during an influenza pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The WHO suggested that governments stockpile, as part of preparations for the next influenza pandemic, sufficient influenza antiviral drugs to treat approximately 25% of their populations. Our aim is two-fold: first, since in many countries the antiviral stockpile is well below this level, we search for suboptimal strategies based on treatment provided only to an age-dependent fraction of cases. Second, since in some countries the stockpile exceeds the suggested minimum level, we search for optimal strategies for post-exposure prophylactic treatment of close contacts of cases.</p> <p>Methods</p> <p>We used a stochastic, spatially structured individual-based model, considering explicit transmission in households, schools and workplaces, to simulate the spatiotemporal spread of an influenza pandemic in Italy and to evaluate the efficacy of interventions based on age-prioritized use of antivirals.</p> <p>Results</p> <p>Our results show that the antiviral stockpile required for treatment of cases ranges from 10% to 35% of the population for <it>R</it><sub>0 </sub>in 1.4 – 3. No suboptimal strategies, based on treatment provided to an age-dependent fraction of cases, were found able to remarkably reduce both clinical attack rate and antiviral drugs needs, though they can contribute to largely reduce the excess mortality. Treatment of all cases coupled with prophylaxis provided to younger individuals is the only intervention resulting in a significant reduction of the clinical attack rate and requiring a relatively small stockpile of antivirals.</p> <p>Conclusion</p> <p>Our results strongly suggest that governments stockpile sufficient influenza antiviral drugs to treat approximately 25% of their populations, under the assumption that <it>R</it><sub>0 </sub>is not much larger than 2. In countries where the number of antiviral stockpiled exceeds the suggested minimum level, providing prophylaxis to younger individuals is an option that could be taken into account in preparedness plans. In countries where the number of antivirals stockpiled is well below 25% of the population, priority should be decided based on age-specific case fatality rates. However, late detection of cases (administration of antivirals 48 hours after the clinical onset of symptoms) dramatically affects the efficacy of both treatment and prophylaxis.</p

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    Get PDF
    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses

    Get PDF
    Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants
    corecore