1,306 research outputs found
Weak Mixing Angle and Higgs Mass in Gauge-Higgs Unification Models with Brane Kinetic Terms
We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the
constraint of weak mixing angle by introducing localized brane kinetic terms in
higher dimensional GHU models with bulk and simple gauge groups. We find that
those terms lead to a ratio between Higgs and W boson masses, which is a little
bit deviated from the one derived in the standard model. From numerical
analysis, we find that the current lower bound on the Higgs mass tends to
prefer to exceptional groups E(6), E(7), E(8) rather than other groups like
SU(3l), SO(2n+1), G(2), and F(4) in 6-dimensional(D) GHU models irrespective of
the compactification scales. For the compactification scale below 1 TeV, the
Higgs masses in 6D GHU models with SU(3l), SO(2n+1), G(2), and F(4) groups are
predicted to be less than the current lower bound unless a model parameter
responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally
large enough. To see how the situation is changed in more higher dimensional
GHU model, we take 7D S^{3}/ Z_{2} and 8D T^{4}/ Z_{2} models. It turns out
from our numerical analysis that these higher dimensional GHU models with gauge
groups except for E(6) can lead to the Higgs boson whose masses are predicted
to be above the current lower bound only for the compatification scale above 1
TeV without taking unnaturally large value of the model parameter, whereas the
Higgs masses in the GHU models with E(6) are compatible with the current lower
bound even for the compatification scale below 1 TeV.Comment: 22 pages, 4 figure
Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.
Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis
Star Formation in Galaxies Along the Hubble Sequence
Observations of star formation rates (SFRs) in galaxies provide vital clues
to the physical nature of the Hubble sequence, and are key probes of the
evolutionary properties of galaxies. The focus of this review is on the broad
patterns in the star formation properties of galaxies along the Hubble
sequence, and their implications for understanding galaxy evolution and the
physical processes that drive the evolution. Star formation in the disks and
nuclear regions of galaxies are reviewed separately, then discussed within a
common interpretive framework. The diagnostic methods used to measure SFRs are
also reviewed, and a self-consistent set of SFR calibrations is presented as an
aid to workers in the field.Comment: 41 pages, with 9 figures. To appear in Volume 36 of the Annual Review
of Astronomy and Astrophysic
Aerothermodynamic Analysis of a Reentry Brazilian Satellite
This work deals with a computational investigation on the small ballistic
reentry Brazilian vehicle SARA (acronyms for SAt\'elite de Reentrada
Atmosf\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of
attack in a chemical equilibrium and thermal non-equilibrium are modeled by the
Direct Simulation Monte Carlo (DSMC) method, which has become the main
technique for studying complex multidimensional rarefied flows, and that
properly accounts for the non-equilibrium aspects of the flows. The emphasis of
this paper is to examine the behavior of the primary properties during the high
altitude portion of SARA reentry. In this way, velocity, density, pressure and
temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km.
In addition, comparisons based on geometry are made between axisymmetric and
planar two-dimensional configurations. Some significant differences between
these configurations were noted on the flowfield structure in the reentry
trajectory. The analysis showed that the flow disturbances have different
influence on velocity, density, pressure and temperature along the stagnation
streamline ahead of the capsule nose. It was found that the stagnation region
is a thermally stressed zone. It was also found that the stagnation region is a
zone of strong compression, high wall pressure. Wall pressure distributions are
compared with those of available experimental data and good agreement is found
along the spherical nose for the altitude range investigated.Comment: The paper will be published in Vol. 42 of the Brazilian Journal of
Physic
New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary
Background
Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood.
Methodology/Principal Findings
Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval.
Conclusions/Significance
There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Rotation Curves of Spiral Galaxies
Rotation curves of spiral galaxies are the major tool for determining the
distribution of mass in spiral galaxies. They provide fundamental information
for understanding the dynamics, evolution and formation of spiral galaxies. We
describe various methods to derive rotation curves, and review the results
obtained. We discuss the basic characteristics of observed rotation curves in
relation to various galaxy properties, such as Hubble type, structure,
activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137,
200
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
