4 research outputs found

    Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss

    Get PDF
    The heat contained in the ocean (OHC) dominates the Earth’s energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2– twice that assessed globally in the same period – exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column

    Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    Get PDF
    Concentrations and species of iodine isotopes (I-127 and I-129) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic I-129 in the Arctic Ocean and the Nordic Seas, concentrations of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on I-129 and I-127, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30 degrees and 50 degrees N. The results show iodate as the predominant species in the analyzed marine waters for both I-127 and I-129. Despite the rather constant ratios of I-127(-)/(IO3-)-I-127, the I-129(-)/(IO3-)-I-129 values reveal variations that apparently response to sources, environmental conditions and residence time. These findings provide a new tracer approach that will strongly enhance the application of anthropogenic I-129 in ocean environments and impact on climate at the ocean boundary layer

    Search for Physics Beyond the Standard Model in Opposite-Sign Dilepton Events at √s=7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (SM) in final states with opposite-sign isolated lepton pairs accompanied by hadronic jets and missing transverse energy. The search is performed using LHC data recorded with the CMS detector, corresponding to an integrated luminosity of 34 pb. -1. No evidence for an event yield beyond SM expectations is found. An upper limit on the non-SM contribution to the signal region is deduced from the results. This limit is interpreted in the context of the constrained minimal supersymmetric model. Additional information is provided to allow testing the exclusion of specific models of physics beyond the SM.0CMS Collaborationinfo:eu-repo/semantics/publishe
    corecore