36 research outputs found
Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole
A novel series of tubulin polymerization inhibitors, based on the 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8 nM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3'-chloro-4'-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells
CD154 is an important regulator of chronic lymphocytic leukaemia (CLL)-cell survival. In CLL, high serum levels of VEGF are a feature of advanced disease, and we and others have previously shown that CLL cells produce and secrete this growth factor. Since CD154 stimulates VEGF production in other cell types, and VEGF is known to promote cell survival, we examined whether the cytoprotection of CLL cells by CD154 involves VEGF. We report for the first time that treatment of CLL cells with CD154 results in increased VEGF production and demonstrate involvement of NF-kappaB in this process. Moreover, we show that CD154-induced CLL-cell survival is reduced by anti-VEGF-neutralising antibody and by inhibiting VEGF receptor (VEGFR) signalling with SU5416. However, addition of exogenous VEGF alone or blocking secreted autocrine VEGF had little or no effect on CLL-cell survival. We therefore conclude that CLL-cell cytoprotection in the presence of CD154 requires combined signalling by both CD40 and VEGFR. This combined signalling and resulting cytoprotection were shown to involve NF-kappaB activation and increased survivin production. In conclusion, our findings identify autocrine VEGF as an important mediator of the antiapoptotic effect of CD40 ligation, and thus provide new insights into CLL-cell rescue by CD154 in lymphoreticular tissues