1,189 research outputs found

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    An emergency clinical pathway for stroke patients – results of a cluster randomised trial (isrctn41456865)

    Get PDF
    BACKGROUND: Emergency Clinical Pathways (ECP) for stroke have never been tested in randomized controlled trials (RCTs). OBJECTIVE: To evaluate the effectiveness of an ECP for stroke patients in Latium (Italy) emergency system. METHODS: cluster-RCT designed to compare stroke patient referrals by Emergency Medical Service (EMS) and Emergency Room (ER) health professionals trained in the ECP, with those of non-trained EMS and ER controls. Primary outcome measure was the proportion of eligible (aged /= 80 and symptom onset /= 6 hours) stroke patients referred to a stroke unit (SU). Intention to treat (ITT) and per-protocol (PP) analyses were performed, and risk ratios (RR) adjusted by age, gender and area, were calculated. RESULTS: 2656 patients in the intervention arm and 2239 in the control arm required assistance; 78.3% of the former and 80.6% of the latter were admitted to hospitals, and respectively 74.8% and 78.3% were confirmed strokes. Of the eligible confirmed strokes, 106/434 (24.4%) in the intervention arm and 43/328 (13.1%) in the control arm were referred to the SU in the ITT analysis (RR = 2.01; 95% CI: 0.79-4.00), and respectively 105/243 (43.2%) and 43/311 (13.8%) in the PP analysis (RR = 3.21; 95%CI: 1.62-4.98). Of patients suitable for i.v. thrombolysis, 15/175 (8.6%) in the intervention arm and 2/115 (1.7%) in the control arm received thrombolysis (p = 0.02) in the ITT analysis, and respectively 15/99 (15.1%) and 2/107 (1.9%)(p = 0.001) in the PP analysis. CONCLUSION: Our data suggest potenti efficiency and feasibility of an ECP. The integration of EMS and ERs with SU networks for organised acute stroke care is feasible and may ameliorate the quality of care for stroke patients. TRIAL REGISTRATION: Current Controlled Trials (ISRCTN41456865)

    Vector-Virus Mutualism Accelerates Population Increase of an Invasive Whitefly

    Get PDF
    The relationships between plant viruses, their herbivore vectors and host plants can be beneficial, neutral, or antagonistic, depending on the species involved. This variation in relationships may affect the process of biological invasion and the displacement of indigenous species by invaders when the invasive and indigenous organisms occur with niche overlap but differ in the interactions. The notorious invasive B biotype of the whitefly complex Bemisia tabaci entered China in the late 1990s and is now the predominant or only biotype in many regions of the country. Tobacco curly shoot virus (TbCSV) and Tomato yellow leaf curl China virus (TYLCCNV) are two whitefly-transmitted begomoviruses that have become widespread recently in south China. We compared the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on healthy, TbCSV-infected and TYLCCNV-infected tobacco plants. Compared to its performance on healthy plants, the invasive B biotype increased its fecundity and longevity by 12 and 6 fold when feeding on TbCSV-infected plants, and by 18 and 7 fold when feeding on TYLCCNV-infected plants. Population density of the B biotype on TbCSV- and TYLCCNV-infected plants reached 2 and 13 times that on healthy plants respectively in 56 days. In contrast, the indigenous ZHJ1 performed similarly on healthy and virus-infected plants. Virus-infection status of the whiteflies per se of both biotypes showed limited effects on performance of vectors on cotton, a nonhost plant of the viruses. The indirect mutualism between the B biotype whitefly and these viruses via their host plants, and the apparent lack of such mutualism for the indigenous whitefly, may contribute to the ability of the B whitefly biotype to invade, the displacement of indigenous whiteflies, and the disease pandemics of the viruses associated with this vector

    Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load

    Get PDF
    BACKGROUND: Recent functional MRI (fMRI) studies have demonstrated that there is an intrinsically organized default mode network (DMN) in the resting brain, primarily made up of the posterior cingulate cortex (PCC) and the medial prefrontal cortex (MPFC). Several previous studies have found that the DMN is minimally disturbed during different resting-state conditions with limited cognitive demand. However, this conclusion was drawn from the visual inspection of the functional connectivity patterns within the DMN and no statistical comparison was performed. METHODOLOGY/PRINCIPAL FINDINGS: Four resting-state fMRI sessions were acquired: 1) eyes-closed (EC) (used to generate the DMN mask); 2) EC; 3) eyes-open with no fixation (EO); and 4) eyes-open with a fixation (EO-F). The 2-4 sessions were counterbalanced across participants (n = 20, 10 males). We examined the statistical differences in both functional connectivity and regional amplitude of low frequency fluctuation (ALFF) within the DMN among the 2-4 resting-state conditions (i.e., EC, EO, and EO-F). Although the connectivity patterns of the DMN were visually similar across these three different conditions, we observed significantly higher functional connectivity and ALFF in both the EO and the EO-F conditions as compared to the EC condition. In addition, the first and second resting EC conditions showed significant differences within the DMN, suggesting an order effect on the DMN activity. CONCLUSIONS/SIGNIFICANCE: Our findings of the higher DMN connectivity and regional spontaneous activities in the resting state with the eyes open suggest that the participants might have more non-specific or non-goal-directed visual information gathering and evaluation, and mind wandering or daydreaming during the resting state with the eyes open as compared to that with the eyes closed, thus providing insights into the understanding of unconstrained mental activity within the DMN. Our results also suggest that it should be cautious when choosing the type of a resting condition and designating the order of the resting condition in multiple scanning sessions in experimental design

    Towards Protein Crystallization as a Process Step in Downstream Processing of Therapeutic Antibodies: Screening and Optimization at Microbatch Scale

    Get PDF
    Crystallization conditions of an intact monoclonal IgG4 (immunoglobulin G, subclass 4) antibody were established in vapor diffusion mode by sparse matrix screening and subsequent optimization. The procedure was transferred to microbatch conditions and a phase diagram was built showing surprisingly low solubility of the antibody at equilibrium. With up-scaling to process scale in mind, purification efficiency of the crystallization step was investigated. Added model protein contaminants were excluded from the crystals to more than 95%. No measurable loss of Fc-binding activity was observed in the crystallized and redissolved antibody. Conditions could be adapted to crystallize the antibody directly from concentrated and diafiltrated cell culture supernatant, showing purification efficiency similar to that of Protein A chromatography. We conclude that crystallization has the potential to be included in downstream processing as a low-cost purification or formulation step

    Offline Memory Reprocessing: Involvement of the Brain's Default Network in Spontaneous Thought Processes

    Get PDF
    BACKGROUND: Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. METHODOLOGY/PRINCIPAL FINDING: Using functional magnetic resonance imaging (fMRI), we first identified an STPs-network whose activity was positively correlated with the subjects' tendency of having STPs during a task-free state. The STPs-network was then found to be strongly associated with the default network, which has previously been established as being active during the task-free state. Interestingly, we found that offline reprocessing of previously memorized information further increased the activity of the STPs-network regions, although during a state with less STPs. In addition, we found that the STPs-network kept a dynamic balance between functional integration and functional separation among its component regions to execute offline memory reprocessing in STPs. CONCLUSION/SIGNIFICANCE: These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+ÎŒ+Ό−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0ÎŒ+Ό−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)ÎŒ+Ό−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+ÎŒ+Ό−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0ÎŒ+Ό−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕΌ+Ό−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure

    Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for a new heavy charged vector boson Wâ€ČW^\prime decaying to an electron-neutrino pair in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96\unit{TeV}. The data were collected with the CDF II detector and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No significant excess above the standard model expectation is observed and we set upper limits on σ⋅B(Wâ€Č→eÎœ)\sigma\cdot{\cal B}(W^\prime\to e\nu). Assuming standard model couplings to fermions and the neutrino from the Wâ€ČW^\prime boson decay to be light, we exclude a Wâ€ČW^\prime boson with mass less than 1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
    • 

    corecore