62 research outputs found

    Microbotanical residues for the study of early hominin tools

    Full text link
    More than 2 million years ago in East Africa, the earliest hominin stone tools evolved amidst changes in resource base, with pounding technology playing a key role in this adaptive process. Olduvai Gorge (now Oldupai) is a famed locality that remains paramount for the study of human evolution, also yielding some of the oldest battering tools in the world. However, direct evidence of the resources processed with these technologies is lacking entirely. One way to obtain this evidence is through the analysis of surviving residues. Yet, linking residues with past processing activities is not simple. In the case of plant exploitation, this link can only be established by assessing site-based reference collections inclusive of both anthropogenic and natural residues as a necessary first step and comparative starting point. In this paper, we assess microbotanical remains from rock clasts sourced at the same quarry utilized by Oldowan hominins at Oldupai Gorge. We mapped this signal and analysed it quantitatively to classify its spatial distribution objectively, extracting proxies for taxonomic identification and further comparison with freestanding soils. In addition, we used blanks to manufacture pounding tools for blind, controlled replication of plant processing. We discovered that stone blanks are in fact environmental reservoirs in which plant remains are trapped by lithobionts, preserved as hardened accretions. Tool use, on the other hand, creates residue clusters; however, their spatial distribution can be discriminated from purely natural assemblages by the georeferencing of residues and statistical analysis of resulting patterns. To conclude, we provide a protocol for best practice and a workflow that has the advantage of overcoming environmental noise, reducing the risk of false positive, delivering a firm understanding of residues as polygenic mixtures, a reliable use of controls, and most importantly, a stronger link between microbotanical remains and stone tool use

    El ADN: biomolécula alternativa para la construcción de nanoestructuras y materiales compuestos

    Get PDF
    El ácido desoxirribonucleico, o ADN, es una biomolécula esencial para la transferencia de la información genética en los seres vivos que residen en el planeta. Las propiedades fisicoquímicas de este ácido nucleico tales como ionización de las bases heterocíclicas y la formación de puentes de hidrógeno entre bases complementarias, han atraído la atención de investigadores para la construcción de estructuras a nivel nanométrico. Una breve revisión de los trabajos reportados sobre este tema, así como la presentación de resultados recientes en la síntesis de nanoestructuras metálicas, mediante este biopolímero, son abordadas en este reporte. Desde la propuesta inicial de utilizar el ADN para producir nanoestructuras por uniones de sus cadenas, hace sólo unas décadas, hasta el diseño y desarrollo de nanomateriales basados en ADN, son presentados y discutidos, proponiendo al final una perspectiva de la tendencia de las líneas de investigación relacionadas.Deoxyribonucleic acid, or DNA, is an essential biomolecule for the genetic information transfer in living organisms, which reside in Earth. Physicochemical properties of this nucleic acid, such as heterocyclical bases ionization and hydrogen bonds interactions between complementary bases, have attracted the attention of researchers for construction of structures, at the nanometric level. A brief review on the reported works about this topic, as well as presentation of recent results in synthesis of metallic nanostructures by this polimer, are presented. From the initial proposal to employ DNA to produce nanostructures by the chains union, some decades ago, to the nanomaterials design and development based on DNA, are presented and discussed. Finally, the perspective to future trends for these research areas is mentioned

    Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans

    Get PDF
    Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.The authors thank the units of flow cytometry, cell culture and statistical analysis. We are grateful to J. Villarejo, M. Fernandez-Garcia, and F. Sanchez-Cobos, for expert help and support. This work was partially supported by Fundacion Mutua Madrilena and the Ministry of Economy and Competitiveness ISCIII-FIS grants PI13/00269, PI16/00050, and PI17/01324, co-financed by ERDF (FEDER) Funds from the European Commission, ``A way of making Europe.´´ MR holds a Miguel Servet II contract (CPII14/00009). LS-M holds a IiSGM intramural contract.S

    Isotopic and microbotanical insights into Iron Age agricultural reliance in the Central African rainforest

    Get PDF
    The emergence of agriculture in Central Africa has previously been associated with the migration of Bantu-speaking populations during an anthropogenic or climate-driven ‘opening’ of the rainforest. However, such models are based on assumptions of environmental requirements of key crops (e.g. Pennisetum glaucum) and direct insights into human dietary reliance remain absent. Here, we utilise stable isotope analysis (δ13C, δ15N, δ18O) of human and animal remains and charred food remains, as well as plant microparticles from dental calculus, to assess the importance of incoming crops in the Congo Basin. Our data, spanning the early Iron Age to recent history, reveals variation in the adoption of cereals, with a persistent focus on forest and freshwater resources in some areas. These data provide new dietary evidence and document the longevity of mosaic subsistence strategies in the region

    Hunter-gatherer environments at the Late Pleistocene sites of Mwanganda's Village and Bruce, northern Malawi

    Get PDF
    Mwanganda's Village (MGD) and Bruce (BRU) are two open-air site complexes in northern Malawi with deposits dating to between 15 and 58 thousand years ago (ka) and containing Middle Stone Age (MSA) lithic assemblages. The sites have been known since 1966 and 1965, respectively, but lacked chronometric and site formation data necessary for their interpretation. The area hosts a rich stone artifact record, eroding from and found within alluvial fan deposits exhibiting poor preservation of organic materials. Although this generally limits opportunities for site-based environmental reconstructions, MGD and BRU are located at the distal margins of the alluvial fan, where lacustrine lagoonal deposits were overprinted by a calcrete paleosol. This has created locally improved organic preservation and allowed us to obtain ecological data from pollen, phytoliths, and pedogenic carbonates, producing a regional- to site-scale environmental context for periods of site use and abandonment. Here, we integrate the ecological data into a detailed site formation history, based on field observations and micromorphology, supplemented by cathodoluminescence microscopy and μ-XRF. By comparing local, on-site environmental proxies with more regional indicators, we can better evaluate how MSA hunter-gatherers made decisions about the use of resources across the landscape. Our data indicate that while tree cover similar to modern miombo woodland and evergreen gallery forest prevailed at most times, MSA hunter-gatherers chose more locally open environments for activities that resulted in a lithic artifact record at multiple locations between 51 and 15 ka.publishedVersio

    Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa

    Get PDF
    Africa hosts the greatest human genetic diversity globally, but legacies of ancient population interactions and dispersals across the continent remain understudied. Here, we report genome-wide data from 20 ancient sub-Saharan African individuals, including the first reported ancient DNA from the DRC, Uganda, and Botswana. These data demonstrate the contraction of diverse, once contiguous hunter-gatherer populations, and suggest the resistance to interaction with incoming pastoralists of delayed-return foragers in aquatic environments. We refine models for the spread of food producers into eastern and southern Africa, demonstrating more complex trajectories of admixture than previously suggested. In Botswana, we show that Bantu ancestry post-dates admixture between pastoralists and foragers, suggesting an earlier spread of pastoralism than farming to southern Africa. Our findings demonstrate how processes of migration and admixture have markedly reshaped the genetic map of sub-Saharan Africa in the past few millennia and highlight the utility of combined archaeological and archaeogenetic approaches

    Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart

    Get PDF
    After myocardial infarction in the mammalian heart, millions of cardiomyocytes are lost and replaced by fibrotic scar tissue. While fibrosis is persistent in adult mammals, there are some vertebrates, including zebrafish, with the capacity for regeneration. This process does not occur in the absence of fibrosis. Here we studied subpopulations of collagen-producing cells and analyzed their fate after complete regeneration of the zebrafish myocardium. Our data show that fibroblasts persisted in the regenerated heart but shut down the profibrotic program. While fibrosis could be considered as detrimental to the regeneration process, our study reveals a positive effect on cardiomyocyte proliferation. Accordingly, a fibrotic response can be beneficial for heart regeneration. In the zebrafish (Danio rerio), regeneration and fibrosis after cardiac injury are not mutually exclusive responses. Upon cardiac cryoinjury, collagen and other extracellular matrix (ECM) proteins accumulate at the injury site. However, in contrast to the situation in mammals, fibrosis is transient in zebrafish and its regression is concomitant with regrowth of the myocardial wall. Little is known about the cells producing this fibrotic tissue or how it resolves. Using novel genetic tools to mark periostin b - and collagen 1alpha2 (col1a2)-expressing cells in combination with transcriptome analysis, we explored the sources of activated fibroblasts and traced their fate. We describe that during fibrosis regression, fibroblasts are not fully eliminated but become inactivated. Unexpectedly, limiting the fibrotic response by genetic ablation of col1a2 -expressing cells impaired cardiomyocyte proliferation. We conclude that ECM-producing cells are key players in the regenerative process and suggest that antifibrotic therapies might be less efficient than strategies targeting fibroblast inactivation

    Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    Get PDF
    BACKGROUND: Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. RESULTS: We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. CONCLUSION: Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required
    corecore