89 research outputs found

    Amide-Directed Formation of Five-Coordinate Osmium Alkylidenes from Alkynes

    Get PDF
    The amide-directed synthesis of five-coordinate osmium alkylidene derivatives from alkynes is reported. These types of complexes, which have been elusive until now because of the tendency of osmium to give hydride alkylidyne species, are prepared by reaction of the dihydride OsH2Cl2(PiPr3)2 (1) with terminal alkynes containing a distal amide group. Complex 1 reacts with N-phenylhex-5-ynamide and N-phenylhepta-6-ynamide to give OsCl2{=C(CH3)(CH2)nNH(CO)Ph}(PiPr3)2 (n = 3 (2), 4 (3)). The relative position of carbonyl and NH groups in the organic substrates has no influence on the reaction. Thus, treatment of 1 with N-(pent-4-yn-1-yl)benzamide leads to OsCl2{=C(CH3)(CH2)3NHC(O)Ph}(PiPr3)2 (4). The new compounds are intermediate species in the cleavage of the C-C triple bond of the alkynes. Under mild conditions, they undergo the rupture of the Ca-CH3 bond of the alkylidene, which comes from the alkyne triple bond, to afford six-coordinate hydride-alkylidyne derivatives. In dichloromethane, complex 2 gives a 10:7 mixture of OsHCl2{=C(CH2)3C(O)NHPh}(PiPr3)2 (5) and OsHCl2{=CCH(CH3)(CH2)2C(O)NHPh}(PiPr3)2 (6). The first complex contains a linear separation between the alkylidyne Ca atom and the amide group, whereas the spacer is branched in the second complex. In contrast to the case for 2, complex 4 selectively affords OsHCl2{=C(CH2)3NHC(O)Ph}(PiPr3)2 (7). In spite of their instability, these compounds give the alkylidene-allene metathesis, being a useful entry to five-coordinate vinylidene complexes, including the dicarbon-disubstituted OsCl2(=C=CMe2)(PiPr3)2 (8) and the monosubstituted OsCl2(=C=CHCy)(PiPr3)2 (9)

    Hydroacoustics as a tool to examine the effects of Marine Protected Areas and habitat type on marine fish communities

    Get PDF
    Abstract Hydroacoustic technologies are widely used in fisheries research but few studies have used them to examine the effects of Marine Protected Areas (MPAs). We evaluate the efficacy of hydroacoustics to examine the effects of closure to fishing and habitat type on fish populations in the Cabo Pulmo National Park (CPNP), Mexico, and compare these methods to Underwater Visual Censuses (UVC). Fish density, biomass and size were all significantly higher inside the CPNP (299%, 144% and 52% respectively) than outside in non-MPA control areas. These values were much higher when only accounting for the reefs within the CPNP (4715%, 6970% and 97% respectively) highlighting the importance of both habitat complexity and protection from fishing for fish populations. Acoustic estimates of fish biomass over reef-specific sites did not differ significantly from those estimated using UVC data, although acoustic densities were less due to higher numbers of small fish recorded by UVC. There is thus considerable merit in nesting UVC surveys, also providing species information, within hydroacoustic surveys. This study is a valuable starting point in demonstrating the utility of hydroacoustics to assess the effects of coastal MPAs on fish populations, something that has been underutilised in MPA design, formation and management

    Determinants of reef fish assemblages in tropical Oceanic islands

    Get PDF
    Diversity patterns are determined by biogeographic, energetic, and anthropogenic factors, yet few studies have combined them into a large‐scale framework in order to decouple and compare their relative effects on fish faunas. Using an empirical dataset derived from 1527 underwater visual censuses (UVC) at 18 oceanic islands (five different marine provinces), we determined the relative influence of such factors on reef fish species richness, functional dispersion, density and biomass estimated from each UVC unit. Species richness presented low variation but was high at large island sites. High functional dispersion, density, and biomass were found at islands with large local species pool and distance from nearest reef. Primary productivity positively affected fish richness, density and biomass confirming that more productive areas support larger populations, and higher biomass and richness on oceanic islands. Islands densely populated by humans had lower fish species richness and biomass reflecting anthropogenic effects. Species richness, functional dispersion, and biomass were positively related to distance from the mainland. Overall, species richness and fish density were mainly influenced by biogeographical and energetic factors, whereas functional dispersion and biomass were strongly influenced by anthropogenic factors. Our results extend previous hypotheses for different assemblage metrics estimated from empirical data and confirm the negative impact of humans on fish assemblages, highlighting the need for conservation of oceanic islands.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Rhodium(III)-Catalyzed Dearomatizing (3+2) Annulation of 2-Alkenylphenols and Alkynes

    Get PDF
    Appropriately substituted 2-alkenylphenols undergo a mild formal [3C+2C] cycloaddition with alkynes when treated with a Rh(III) catalyst and an oxidant. The reaction, which involves the cleavage of the terminal C–H bond of the alkenyl moiety and the dearomatization of the phenol ring, provides a versatile and efficient approach to highly appealing spirocyclic skeletons and occurs with high selectivityWe thank the financial support provided by the Spanish Grants SAF2010-20822-C02 and CSD2007-00006 Consolider Ingenio 2010, the Xunta de Galicia Grants GR2013-041 and EM2013/036, the ERDF, and the European Research Council (Advanced Grant No. 340055). M.G. thanks Xunta de Galicia for a Parga Pondal contractS

    Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes

    Get PDF
    Copyright: © 2011 Mora et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas

    High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental Phylogeography of the Neotropical Tree Frog

    Get PDF
    Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered
    corecore