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Abstract

Species distributed across vast continental areas and across major biomes provide unique model systems for studies of
biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such
regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South
America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial
pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two
mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and
closely related species distributed across eleven countries, effectively comprising the entire range of the group. We
performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer
ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently
unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of
D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex
constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group
with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of
eight mtDNA lineages have ranges .100,000 km2. One of them occupies an area of almost one million km2 encompassing
multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that
widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity
still remains to be discovered.
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Introduction

The application of molecular methods has expedited tremen-

dously the discovery and characterization of global biological

diversity [1]. This is particularly true for amphibians, where the

rate of species descriptions has accelerated enormously in the past

20 years [2–7]. Integrative approaches that combine multiple lines

of evidence have allowed taxonomists to define and name many of

these evolutionary independent lineages as proper species [8–11].

The improved delimitation of species diversity, transforming one

widely distributed species into several species, each with a smaller

range, in many cases has notable impact on conservation. For

instance, the International Union for Conservation of Nature

(IUCN) status of certain populations may change from ‘Least

Concern’ to one of the various threat categories or simply ‘Data

Deficient’ [12–14].

Cryptic genetic diversity is now so commonly reported in

molecular studies of amphibian species that the existence of

nominally widespread tropical species has been called into

question [15,16]. However, supposedly widespread species occur-

ring across multiple biomes and countries are rarely comprehen-

sively sampled across their complete geographic range in

screenings of genetic diversity [5,6] or phylogeographic studies

[17–21]. Sampling of species from across vast continental areas

and across political borders is often handicapped by financial,

logistic and political factors.

In the Neotropics, nominal taxa such as Rhinella margaritifera
(Bufonidae), Leptodactylus fuscus (Leptodactylidae), and Scinax
ruber (Hylidae) are prominent examples of anuran species once

considered to occur across nearly the entire tropical lowlands of

South America. Evidence has accumulated that many such

putatively widespread species could in fact be complexes of

cryptic taxa (e.g. [20,22]). However, given limited genetic

sampling and the difficulty in reviewing material from all countries

hosting populations, their relationships and systematics remain in

many cases as unclear as they were decades ago [23,24].

A further example of a putatively widespread Neotropical

amphibian species is Dendropsophus minutus (Peters, 1872), a

small hylid frog of 21–28 mm snout-vent length, distributed in Cis-

Andean South America, including the Andean slopes, the Amazon

Basin, the Guiana Shield, down to the Atlantic Forests of

southeastern Brazil, with an elevational record from near sea

level up to 2,000 m [25]. Variation in coloration, osteology,

advertisement calls and larval morphology [6,26–29], along with

molecular data from limited parts of the species’ distribution [21]

suggest that the nominal D. minutus might represent a species

complex. However, the sheer size of its supposed geographical

range along with nomenclatural and taxonomic complexity (six

junior synonyms, [25]) and unresolved relationships in the D.

minutus species group [30] have so far made these frogs

inaccessible to revision.

In this case study, we use D. minutus to understand to what

degree a tropical, small-sized anuran has the potential to be

continentally widespread with limited genetic structure within its

range, as expected for a single species. In addition to conservation

concerns, this question has important implications for South

American biogeography in general and amphibian systematics and

evolution in particular. Evidence is accumulating that body size in

amphibians has a positive correlation with range size [31,32], but

contrary to this trend many Holarctic amphibians occur with little

genetic substructure across the vast ranges they colonized after the

last glaciation, despite sometimes moderate to small body sizes

(examples in [16]). Whether such patterns also exist across vast

ranges in tropical regions, with their distinct historical climatic

dynamics [33], is an open question. Deciphering possible cryptic

diversity within the nominal D. minutus would also help inform

conservation assessments which typically use species’geographic

distributions as criteria for conservation status [13].

The present study is a multinational collaborative effort to

sample nominal D. minutus across its entire range and at a spatial

resolution unprecedented for a Neotropical vertebrate. Based on

mitochondrial DNA sequences as a proxy for overall genetic

diversity, we identify genealogical lineages currently subsumed

within D. minutus and putative allies and assess their historical

relationships and geographic ranges. Although there are some data

on morphology and bioacoustics, we only partially discuss these

here and refrain from making taxonomic decisions, but instead

provide a roadmap for future integrative studies. Our focus,

therefore, is on the biogeographical implications of the phylogeo-

graphic origins and evolutionary history of the D. minutus species

group. We reveal here that this species complex exists as a mixture

of both geographically widespread lineages and probable micro-

endemic lineages.

Methods

Data collection and laboratory methods
No experiments were conducted using living animals. All field

researches and collecting of specimens were approved by

competent authorities, these being: Instituto Chico Mendes –

ICMBio, Brazil, through collection permits granted to MG

(21710-2), VGDO (19920), RL (26957-1), MTR (10126-1), CFBH

(22511-1) and JPP (12600-2); Museo Nacional de Historia Natural

– Colección Boliviana de Fauna, La Paz, Bolivia (permits: CBF

CITE No. 02/2006 and No. 81/2007); DGB and the INRENA

(granted permits to IDLR for collecting Bolivian and Peruvian

material respectively); The Guyana Environmental Protection

Agency and the Guyanese Ministry of Amerindian Affairs and

Environmental Protection Agency of Guyana through research
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permit granted to PJRK’s (180609 BR 112); Ministerio de

Ambiente, Vivienda y Desarrollo Territorial of Colombia through

research and collecting permit granted to AJC (No. 15 of 26 July

2010 and access to genetic resources permit No. 44); Ministerio

Venezolano del Poder Popular para el Ambiente through permits

granted to FJMRR and MHNLS (collection permit #4156, period

2009-2010; access to genetic resources permit #0076 of 22

February 2011). Samples from Ecuador were obtained under

permits MAE-DPP-2011-0691 and 05-2011-Investigación-B-

DPMS/MAE. Voucher specimens were euthanized using methods

that do not require approval by an ethics committee. None of the

species collected for this study is listed in the Convention on

International Trade in Endangered Species of Wild Fauna and

Flora – CITES (www.cites.org).

We analyzed 407 samples of specimens identified as Dendrop-
sophus aperomeus, D. delarivai, D. minutus, D. stingi or D.
xapuriensis which we here consider together with D. limai (not

included in our analysis), to constitute the Dendropsophus minutus
species group (see Results, Figures 1–3 and Figures S1-2). The D.
minutus species group was defined by Faivovich et al. (2005) [30]

to comprise D. delarivai, D. limai, D. minutus and D. xapuriensis.
These authors tentatively allocated Dendropsophus aperomeus to

the D. minimus species group (in accordance with [34]). However,

later molecular phylogenetic analyses suggested different positions

for D. aperomeus [35–38]. Dendropsophus stingi has not been

associated with any species group so far [30], but shares

morphological characters with D. minutus [28,39]. Because of

their unsolved relationships, D. aperomeus and D. stingi were

included in our study.

Genomic DNA was extracted in multiple laboratories using

various routine methodologies. We used polymerase chain

reaction and direct sequencing with PCR primers on automated

Sanger sequencers to obtain DNA sequences of two mitochondrial

gene fragments: the 16S ribosomal RNA gene and the 59 portion

of the cytochrome oxidase subunit I (COI) gene, the latter

corresponding to the standard DNA barcode fragment [40]. See

Supplementary Materials for detailed protocols and primers.

Sequence alignment was performed using the MUSCLE algo-

rithm [41] as implemented in the software MEGA version 5.0

[42]. 16S sequences were available for all samples (407), while

COI sequences were only available for a subset of these (335).

Gapped regions of the 16S alignment were treated as missing data.

To fill the concatenated alignment missing COI sequences were

also treated as missing data. All newly determined sequences were

deposited in GenBank (accession numbers: KJ817824 - KJ817835,

KJ833032 - KJ833585, KJ933533 - KJ933690, KJ940033 -

KJ940049, see also Table S1 for detailed information of data

collection).

Figure 1. Dendropsophus minutus tree with lineage distribution
part 1. 50% Maximum Clade Credibility tree and distribution maps of
mtDNA lineages 1–18. Asterisks represent nodes with posterior
probability equal to 1. Posterior probabilities lower than 0.9 are not
shown.
doi:10.1371/journal.pone.0103958.g001

Figure 2. Dendropsophus minutus tree with lineage distribution
part 2. 50% Maximum Clade Credibility tree and distribution maps of
mtDNA lineages 19–28. Asterisks represent nodes with probability
equals to 1. Probabilities lower than 0.9 are not shown.
doi:10.1371/journal.pone.0103958.g002
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Substitution rate estimation and monophyly of the
Dendropsophus minutus species group

To evaluate the monophyly of the D. minutus group and to

estimate a substitution rate that could be used for calibrating the

phylogeographic analysis (see below), we constructed a time-

calibrated 16S gene tree with node constraints based on fossil and

geographic evidence [30,43,44], comprising sequences of 216

species of hylids (Table S2), including all Dendropsophus species

available from GenBank, plus 28 sequences representing the main

clades of the D. minutus group. Regions of the 16S DNA sequence

data that did not overlap our 16S alignment were excluded to

ensure that the fragments used in the substitution rate estimation

and in the phylogeographic analysis were the same. Additionally

we included one sequence representing each main clade of D.
minutus found in this study.

The calibrated tree was estimated using Bayesian Inference with

posterior probabilities via a Markov Chain Monte Carlo (MCMC)

sampling as implemented in the software BEAST version 1.7.2.

We used a temporal calibration scheme similar to what was used

in previous studies of hylids and other amphibians [44,48–50], as

follows. We constrained three nodes with uniform priors based on

fossil evidence: 1) most recent common ancestor (MRCA) of Acris
and Pseudacris to 15 million years (Ma) or older; 2) MRCA of

Hyla squirella and H. cinerea to 15 Ma or older; and 3) MRCA of

all Hyla as 33 Ma or older [51]. Additionally, we assumed the

MRCA of Phyllomedusinae and Pelodryadinae to be related to the

separation between South America and Australia [52,53].

Therefore, we applied a fourth constraint to the respective MRCA

of the two subfamilies using a normal prior with 40 Ma of mean

and standard deviation of 6 Ma to allow a higher sampling

probability around this value (quantiles: 5% = 30 Ma and

95% = 49.9 Ma) while avoiding hard boundaries. See Methods

S1 for further information.

Substitution models were selected using the Akaike Information

Criterion [45] in jModeltest version 0.1 [46] which suggested a

GTR+I+C model for the 16S data set. A coalescent constant size

tree prior was used with a lognormal uncorrelated relaxed clock

model. The chain was run for 108 steps, sampling every 104 steps.

We repeated the analysis five times to ensure convergence of

posterior distributions. A maximum credibility clade tree was

summarized using Tree Annotator version 1.7.2 provided in the

BEAST 1.7.2 package. The first 20% of the trees were discarded

as burn-in after empirical assessment of appropriate chain

convergence and mixing with Tracer version 1.5 [47]. We used

the median of the posterior density of the substitution rate

(ucld.mean) obtained by this analysis as prior for phylogeographic

analysis of the D. minutus complex. See Methods S1 for additional

information.

Gene tree inference, GMYC analysis and genetic distance
calculations

We estimated an ultrametric mitochondrial gene tree using

BEAST software, and all available 16S and COI sequences of the

D. minutus group (1,068 bp concatenated alignment). As out-

groups we included samples of Dendropsophus nanus, D.
bipunctatus and D. microcephalus. We subdivided the data set

into three partitions: (1) 16S, (2) third codon positions of COI, and

(3) combined first and second positions of COI, and implemented

a GTR+I+C model for each of the partitions, as suggested by the

software PartitionFinder [54]. Bayesian inference of an ultrametric

phylogenetic tree, using BEAST software, followed the method

described above for the taxonomically more inclusive 16S data set.

The resulting ultrametric consensus tree was used as an input to

estimate the number of statistically (and presumed evolutionarily)

distinct lineages using the generalized mixed Yule-coalescent

(GMYC) algorithm. Mitochondrial DNA sequence variation can

provide a preliminary yet objective estimate of the number of

phenetic clusters or evolutionary lineages represented in a given

dataset [55,56]. Of the many available algorithms [57,58], we

applied the GMYC algorithm which identifies clusters of mtDNA

haplotypes by testing for a transition between fast coalescent rates

within clusters relative to slower times to common ancestry among

clusters, i.e., as described by a stochastic birth-only Yule model in

forward time [59]. GMYC is expected to perform best under

dense spatial sampling and limited migration [60,61], two criteria

which our study of the D. minutus species group would seem to

meet (see below). Each statistically significant cluster identified by

GMYC may correspond to a deep conspecific lineage or possibly

an undescribed species, depending on support from other available

taxonomic data [62]. The GMYC algorithm requires only an

ultrametric tree as input, for which we used the concatenated 2-

gene dataset (see above). We compared the likelihood of a single

versus multiple transition threshold model via a x2 likelihood ratio

test [63]. All GMYC calculations were performed using the ‘splits’

package, downloaded as ‘gmyc.pkg.0.9.6.R’ for the R statistical

platform [64].

Using the clusters identified in the GMYC analysis, we

calculated the uncorrected pairwise p-distances between these

Figure 3. Dendropsophus minutus tree with lineage distribution
part 3. 50% Maximum Clade Credibility tree and distribution maps of
mtDNA lineages 29–43. Asterisks represent nodes with probability
equals to 1. Probabilities lower than 0.9 are not shown.
doi:10.1371/journal.pone.0103958.g003
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lineages and the mean p-distances within lineages using the 16S

sequences only with pairwise deletion in the software MEGA5

[42]. Additionally, to determine the geographical extent of each

lineage we used the occurrence data to generate minimum convex

polygons representing the distribution range of each lineage

observed in more than two localities. We then calculated the area

(in km2) of each polygon using a Winkel-tripel projection in

ArcGIS 10 software (ESRI, Redlands, CA).

Phylogeographic analysis and connectivity surfaces
To reconstruct dispersal pathways within the D. minutus species

group we applied a phylogeographic method that reconstructs

geographical coordinates at the nodes of the genealogy using

continuous trait reconstruction assuming a log-normal Relaxed

Random Walk model implemented in BEAST software. The

method estimates ancestral traits and topology simultaneously in a

Bayesian framework, taking into account uncertainty of the

topology [65]. For details of our implementation of this method,

see Methods S1. Analyses assumed a coalescent prior with

constant population size and an uncorrelated log-normal relaxed

clock model [66], as well as an HKY+C model of substitution for

each of the partitions used also in the gene tree estimation (see

above). We ran three independent chains of 56108 iterations with

different random seeds sampling every 50,000 steps. In order to

calibrate the tree we used the substitution rate previously estimated

for the 16S fragment using a wider time tree analysis of

Dendropsophus (see above). Mixing of parameter sampling,

effective sample size (ESS) and convergence were checked in

Tracer 1.5. The resulted tree was summarized with Tree

Annotator 1.7.2. The software SPREAD [67] was used to

generate a kml (Keyhole Markup Language) file which was plotted

in a Google Earth map (http://earth.google.com).

To obtain independent support for these dispersal pathways

derived from phylogeographic analysis, we constructed conduc-

tance maps for the D. minutus species group based on Species

Distribution Models (SDM) using the software Circuitscape

version 3.5.8 [68]. This approach does not incorporate phylogeo-

graphic information but uses circuit theory to predict connectivity

between localities or areas in heterogeneous landscapes. The

algorithm explicitly incorporates effects of limited and irregular

habitat extent accounting for multiple pathways and wider habitat

bands connecting populations [69]. SDMs can be taken as possible

conductive surfaces where highly suitable areas would have high

conductance (or low resistance to dispersion) and low suitability

areas would have low conductance (or high resistance to

dispersion). We thus used a correlative niche model approach

and derived a SDM to be used as a base layer for constructing

conductivity surfaces.

As our data might represent multiple cryptic species or lineages,

a SDM generated on the basis of all samples could be affected by

the magnitude of the differences in climatic niches among the

different lineages. To assess the extent of climatic niche

diversification in the D. minutus group, we plotted the first two

PC scores of a Principal Component Analysis (PCA) calculated

from the values of 19 bioclimatic variables associated with each

locality. Given the strong overlap of bioclimatic niches, especially

of the majority of lineages 19–43 (Figure S3), i.e., the D. minutus
complex, we combined these for constructing a single SDM. A

robust test of niche conservatism between the lineages (as

presented by [70]) was not applicable in our study because only

a low number of localities was available for most lineages and

because these tests often overestimate niche differentiation and are

highly sensitive to sampling bias [71]. We furthermore projected

the SDM to climatic scenarios representing past warm and cold

extremes of the Late Pleistocene (Last Interglacial, 120 kyrBP, Last

Glacial Maximum, 21 kyrBP). The SDM was constructed using six

bioclimatic variables (see Methods S1) [72] using MaxEnt version

3.3.3a [73,74]. The maps of the SDMs obtained for the present

and past climate scenarios (see Figure S4) were then used as the

input for Circuitscape along with the localities of the whole D.
minutus group to calculate a conductance map between all pairs of

sampled localities. The four resulting conductance maps were

averaged. In addition, to highlight areas that under different

models maintained high conductance, we applied a 25% quartile

threshold to generate binary conductance maps, keeping the grids

with higher values of conductance. The maps were then

superimposed and spatially summed to highlight the areas of high

sustained conductance (stable corridors). All geospatial processing

was performed in ArcGis 10 (ESRI; Redlands, CA). See Methods

S1 for detailed methodology.

Results

The 16S tree containing all Dendropsophus for which sequences

were available recovered the monophyly of the D. minutus species

group (Figure S1). Within the group, the clade containing samples

representing lineages 19–43 received a maximal posterior prob-

ability (1.0) and is defined here as the D. minutus complex

(Figures 1–3, Figure S2B-D), given that lineage 25 contains

samples from the type locality of D. minutus (Figures S2B). The

substitution rate for the 16S fragment estimated from this analysis

was 7.3561023/site/Ma [median of ucld.mean parameter (95%

HPD = 6.1–8.761023)], or 1.47% total divergence per Ma. The

exclusion of the third temporal constraint involving the MRCA of

the genus Hyla (Methods S1) did not change substantially the

substitution rate estimate.

The 16S sequences had an average of 477 base pairs (bp) across

individuals (standard deviation: 9.6) while the COI sequences had

an average of 586 bp (standard deviation: 19.8). The alignment of

all 16S sequences of the D. minutus species group contained 407,

while the COI fragment contained 335 samples. The GMYC

analysis on the concatenated data identified 43 entities excluding

the outgroup samples, consisting of 31 clusters and 12 ‘singletons’,

i.e., an entity consisting of a single concatenated mtDNA

haplotype. The likelihood ratio test failed to reject the single-

threshold GMYC model (x2
9 d.f. = 6.09, P-value = 0.7308), thus

the following results are based on this simpler model, which tends

to be more conservative in estimating number of statistically

significant clusters.

Most of the mitochondrial lineages containing more than one

sample received strong nodal support (Figures 1–3). The lineages

splitting off from basal nodes of the tree (lineages 1–18) are

distributed in the Guiana Shield, and in the Andean region of

Peru, Ecuador and Colombia, with an eastern extralimital clade

assembling disjunt localities in Mato Grosso and Pará (lineages 9–

10; Figure 1).

The remaining lineages are in general more widely distributed

in central and eastern South America (Figures 2–3). Lineages are

largely allopatric but several cases of sympatry were observed

(Figure S5). The uncorrected pairwise distances between lineages

for the 16S gene ranged from 0.7 to 13%, while within-lineage p-

distances ranged from 0.0 to 1.8% (Table S3).

Most of the lineages (45%) were found in only one or two

localities. Fifty per cent of the lineages were only found in areas

smaller than 10 km2, and more than 70% have known ranges

smaller than 10,000 km2. Eight out of the 43 lineages have a

distribution larger than 100,000 km2 (Figure 4). Largest range

sizes were found in northeastern Brazil (Caatinga domain;

Phylogeography of Dendropsophus minutus
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997,262 km2, lineage 36), eastern Bolivia and western Brazil

(Cerrado, Chaco and Dry Forest domains; 293,321 km2, lineage

33) and the Guiana Shield (269,741 km2, lineage 2).

The phylogeographic analysis suggested an Amazonian origin

for the D. minutus group (Figure 5A), with subsequent dispersal to

the Atlantic Forest, Guiana shield and the Andean region

(Figures 5B and 5C). From there, lineages then dispersed outward

from the Atlantic Forest and Amazonia into the southern Atlantic

Forest and eastern Paraguay, northeastern and central Brazil, and

to the Guiana Shield (Figures 5C and 5D). The conductance

analysis with Circuitscape software resulted in the most stable

conductance areas along the Brazilian Atlantic coast, central

Brazil, northeastern Argentina (Misiones region) and northern

Bolivia. The analysis suggested three paths of connectivity between

eastern Brazil and the Amazonian region: 1) across northeastern

Brazil; 2) across central Brazil; and 3) across southern Brazil, the

third being the most stable (Figure 6).

Discussion

Diversity in the Dendropsophus minutus species group
Given the numerous divergent lineages and high degree of

differentiation revealed here, our molecular approach shows that

more than one species could be hidden behind the name

Dendropsophus minutus. At this stage, we refrain from any formal

taxonomic action, as the clarification of the taxonomic status of the

populations involved requires thorough integrative revision. In a

few cases, there exists information on morphology and calls, but

data are not sufficient to either support or reject species status for

individual lineages, or allocate available names with certainty. In

at least one example GMYC has been found to overestimate the

number of species when compared to an integrative approach

[75]. Thus, it is possible that several of the lineages identified by

this method may not correspond to distinct species. Despite this

qualification, some conclusions concerning species diversity can be

derived from our results based on monophyly and GMYC results.

Concerning lineages in the D. minutus species group not

belonging to the D. minutus complex (lineages 1–18; Figure 1),

our analyses revealed multiple deeply differentiated lineages. Our

results under the criteria of mitochondrial monophyly and

statistically distinct genealogical lineage (GMYC) suggest recogni-

tion of the nominal taxa D. aperomeus, D. delarivai, D. stingi and

D. xapuriensis as members of the D. minutus species group, whose

monophyly has not previously been rigorously tested and the

relationships among its species has not been studied. In two cases

(D. aperomeus, D. stingi) the species were not previously allocated

to the D. minutus species group [28,30,34,39,76]. Kaplan (1994)

[28] acknowledged that D. stingi was morphologically similar to

D. minutus, while Köhler and Lötters (2001) [39] pointed to

similarities of D. aperomeus and D. delarivai (the latter species at

Figure 4. Comparative range size of lineages. Range size of lineages within the Dendropsophus minutus complex. Most lineages appear to be
microendemic and are only recorded from one or two localities while eight lineages have ranges larger than 100,000 km2.
doi:10.1371/journal.pone.0103958.g004

Figure 5. Phylogeographic reconstruction of Dendropsophus
minutus group. Phylogeographical analysis of the Dendropsophus
minutus group based on the 16S+COI mitochondrial dataset using a
Relaxed Random Walk model for continuous trait reconstruction in
Beast software. A) center of origin of the D. minutus group. B) Dispersal
to west Amazonia, Guiana Shield, Andean region of Peru and eastern
Brazil; polygon at the east represent the geographic origin of lineages
representing the D. minutus complex. C) Dispersal from east Brazil to
lowland of Bolivia; further dispersal to Guiana Shield, Peruvian and
Colombian areas. D) Recent dispersals to northeast and south Brazil,
east Paraguay and Guiana shield. Green polygons and red branches
indicate relatively older events while dark polygons and black branches
indicate later events. Maps were generated using google earth
(earth.google.com).
doi:10.1371/journal.pone.0103958.g005
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that time being tentatively allocated to the D. minutus group based

on phenetic similarities), and Wiens et al. (2005) [35] found D.
aperomeus to be related to D. minutus. The relationships of D.
aperomeus and D. minutus also remained unresolved in the

analysis of Pyron and Wiens (2011) [37].

Among the D. minutus species group members external to the

D. minutus complex, lineages 1–6 are Guianan, while 7–18 are

primarily distributed along the Andean foothills, and all show well-

pronounced molecular differentiation and divergence. Among

lineages 1–6, there is moderate genetic differentiation. Consider-

ing mitochondrial reciprocal monophyly and GMYC results as

criteria, and being taxonomically conservative, one available

name, Hyla goughi Boulenger, 1911 (type locality: Trinidad),

should likely be removed from the synonymy of D. minutus and

allocated to populations comprised by all or some of lineages 1–6.

As a conservative estimate, we hypothesize that lineages 7–18

comprise seven distinct species, i.e., five named taxa and two

undescribed species (lineages 9+10 and 11+12).

Within the D. minutus complex (i.e., D. minutus sensu lato),

GMYC analyses revealed 25 divergent clades (lineages 19–43 in

Figures 2 and 3, Figure S2B-D). In several cases, these lineages

occur in sympatry (e.g., lineages 19 and 20; 19 and 36; 22 and 27;

27 and 28; 34 and 42). In one case (lineages 30 and 33; Figure 3)

genetic differentiation between allopatric lineages is concordant

with consistant differences in larval morphology (A. Schulze

unpubl. Data, [6]), suggesting species differentiation. However,

larval morphology of D. minutus has not yet been explored

globally across its range. There are some descriptions of external

morphology mainly based on single (or closely located) populations

(e.g. [77,78–84]) and one description of internal larval buccal

morphology [85]. While larval morphology may offer an

alternative source of abundant taxonomic characters [86,87] it

also can be highly plastic, suggesting that more data need to be

collected and coded with care (e.g. [88,89]).

Advertisement calls among populations which, according to our

analyses, would represent distinct lineages, were in some cases

shown to be very similar or even identical [26,90]. The certain

assignment of calls to any mitochondrial lineage may require

sequencing of voucher specimens having recorded calls. On the

other hand, call differences have been found among some lineages

within D. minutus sensu lato identified here through molecular

analyses [6], thus potentially providing further support for the

presence of additional cryptic species.

Our analysis included topotypic material that may correspond

to some of the available names currently regarded as synonyms of

D. minutus. If additional integrative taxonomic studies are able to

link unique diagnostic traits to our mtDNA clades, the following

synonyms may require revalidation: Hyla pallens Lutz, 1925

(lineage 28), H. velata Cope, 1887 (lineage 33), and H. bivittata
Boulenger, 1888 (lineage 39). On the other hand, H. suturata
Miranda-Ribeiro, 1926 (lineage 28), and H. emrichi Mertens, 1927

(lineage 39) likely represent junior synonyms of H. pallens and H.
bivittata, respectively. Samples from the type locality of Hyla
minuta Peters, 1872 form a distinct clade (lineage 25) and do not

Figure 6. Estimated conductance maps for Dendropsophus minuts complex. Conductance maps constructed with the program Circuitscape.
Conductances were estimated according to a spacial distribution modeling for the D. minutus complex projected to four different climatic scenarios.
Conductance maps were averaged and thresholded to show stable dispersal corridors (see methods for details).
doi:10.1371/journal.pone.0103958.g006
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cluster with samples from any other locality studied here (see

Figures S2B-D). Results of the GMYC analyses should be

interpreted with caution, however, as genealogical clusters

identified by this method may correspond to species but may also

simply be conspecific phylogeographic lineages [75].

At some localities our analyses revealed up to three independent

lineages of the D. minutus species group occurring in sympatry or

at least in very close proximity (e.g., lineages 21, 24, 37; lineages

22, 27, 28; lineages 7, 18, 30; lineages 2, 3, 5; Figures 2 and 3;

Figure S5). Several of the sympatric yet highly divergent lineages

are found in or close to areas recognized as Quaternary refugia

(southern Bahia and southeastern São Paulo) [91,92]. Phenotyp-

ically or genetically distinct groups that are able to maintain their

genetic integrity in sympatry may be interpreted as biological

species [93]. However, divergent mtDNA lineages in sympatry

could also be the product of recent secondary contact between

previously isolated yet conspecific (and freely interbreeding)

populations [94]. Therefore, we prefer to interpret these sympatric

entities as Deep Conspecific Lineages pending additional evidence

for possible species status [7,95].

Biogeographic origins of the Dendropsophus minutus
species group

The region of likely origin of the D. minutus group as suggested

by the mitochondrial history (Figure 5A) corresponds to the

Amazon Basin. The estimated time frame of coalescence of all

mtDNA lineages at 18.0 Ma (95% HPD, 14.6–21.4 Ma) falls in the

Early to Middle Miocene, a period following the first peak of

mountain building in the Andes (,23 Ma) and when, according to

Hoorn et al. (2010) [33], western Amazonia was characterized by

a large wetland formation of shallow lakes and swamps known as

the Lake Pebas System (11–17 Ma). This was apparently an

important period for the diversification of the Neotropical fauna

and flora in the Amazonian region [33,96,97]. For instance, this

period coincides with the diversification of other anurans such as

the Allobates trilineatus complex 14.0–15.0 Ma [98], the Rhinella
marina complex 10.7–17.2 Ma [99], the genus Phyzelaphryne 9.0–

18 Ma [100] and the Amazonian Adelophryne clade 13.0–24.0 Ma

[100]; as well as with the diversification of Amazonian

gymnophthalmids of the genus Leposoma around 13.9 Ma [101].

The phylogeographic reconstruction of the D. minutus group

suggests dispersal to the Andes and the Guiana Shield after its

initial diversification between 8.0–11.0 Ma (Figures 5A and B),

with additional recent dispersals (Figures 5C and D). This is in

remarkable concordance with the pattern observed in dendrobatid

frogs for which dispersals from the Amazon Basin into the same

regions were reconstructed at 8.8–10.8 Ma, followed by another

more recent wave 0.7–6.0 Ma [98]. Concomitant with the first

dispersal wave there was a first long distance dispersal of D.
minutus from the Amazonia to the Atlantic Forest.

An old relationship between Amazonia and an Atlantic Forest

area at southeastern Bahia has long been proposed (the ‘‘Hiléia

Bahiana’’ [102]). Independent molecular-based studies have

recovered similar relationships (e.g. [103]) and studies with

amphibians have provided additional evidence for this scenario

[100,104–107]. Some authors proposed that climatic changes in

the Eocene, leading to the formation of a diagonal band of open

and dry biomes (currently Caatinga, Cerrado and Chaco biomes)

separating the Atlantic Forest from Amazonia, likely caused

ancient vicariance of forest dwelling amphibians [103,105,106].

Accordingly, only generalist species that tolerate both dry and

humid conditions could disperse across this potential environmen-

tal barrier, and therefore would be distributed in both wet-forest

biomes [100]. On the other hand, evidence of Miocene dispersal

of forest-dwelling frogs suggests the possibility of relatively more

recent forested connections between Atlantic Forest and Amazo-

nia [100,107]. Our analysis recovers a Late Miocene dispersal of

D. minutus from Amazonia to eastern Brazil (8–13 Ma)

(Figures 5B, C and D). However, frogs of the group are currently

found in a variety of habitats, including savannas and deciduous

forest. Thus, this first dispersal event could have occurred without

the necessity of dense forest continuity and may be unrelated to

ancient dispersal of forest dweling species.

Diversification and dispersal within the Dendropsophus
minutus complex

The polygon corresponding to the reconstructed area of origin

of the D. minutus complex encompasses potentially climatically

stable areas within the Atlantic Forest [108]. From here, the

complex further diversified. Within the Atlantic Forest, sympatry

of lineages was observed within or close to Pleistocene refugia

(lineages 19 and 20; lineages 21 and 24; lineages 22, 23, 25, 26, 27

and 28; Figure 2) suggesting that these stable areas [91,92,108]

might be related to the persistence of deeply divergent lineages.

The inferred history of lineage diversification further recovers two

discontinuities also found in other vertebrates, possibly represent-

ing suture zones [109]. The first of these is located at the southern

border of the state of São Paulo, Brazil, represented by the

southern limit of the distribution of lineages 26 and 40, and the

northern limit of lineage 39, a discontinuity that has also been

observed in pit vipers and toads [92,110,111]. The second possible

suture zone is in the state of Espirito Santo, Brazil, represented by

the northern limit of lineages 21, 23 and 24, and the southern limit

of lineage 19 (Figs. 2–3; Fugure S6), coinciding with genetic breaks

observed in toads, geckos, foxes and woodcreepers [92,112–114].

After the initial diversification of the D. minutus complex in the

Atlantic Forest, our phylogeographic inference suggests subse-

quent dispersal to other areas of eastern South America, central

Brazil and Amazonia, supporting a southern dispersal route

between Amazonia and the Atlantic Forest (Figures 5C and D).

Distribution patterns of different vertebrate groups, as well as

climatic and floristic evidence, suggest recent dispersal corridors

between these forested areas [103,107,114–116]. On the other

hand, the phylogeography of tropical rattlesnakes adapted to dry

biomes suggests past connectivity between open area formations

that are currently isolated [117,118]. These results combined with

paleoclimatic models of the Atlantic Forest and Cerrado [108,119]

support the past existence of a dynamic interplay of dispersal

corridors and temporary barriers across the South American

lowlands. Our conductance analysis that took into account

contrasting climatic scenarios suggests the existence of stable

stretches of favorable habitat for D. minutus along northern and

particularly southern Amazonia during the Pleistocene, which

would have allowed recent dispersal between forested areas of

South America, corroborating the phylogeographic results (Fig-

ure 6).

The stable habitat corridor inferred along southern Amazonia

(Figure 6) was proposed previously as the main floristic connection

between the Atlantic Forest and Amazonia [120] and phylogeo-

graphic analyses of some species of small mammals corroborate

this hypothesis [103]. Moreover, the palynological record from

different continents of the southern hemisphere suggest the

existence of a band of moisture at this latitude (,23uS) during

the Last Glacial Maximum (LGM) [121], which raises the

possibility that this same corridor may have persisted even earlier.

The presence of a mosaic of forest and open formations, and

higher moisture, could have generated conditions necessary for the

existence of a Pleistocenic southern dispersal route for D. minutus.

Phylogeography of Dendropsophus minutus
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Widespread amphibian species in the Neotropics
Data presented herein provide conclusive evidence for a strong

genetic subdivision of the nominal species Dendropsophus minutus
as currently understood. Current taxonomy conservatively as-

sumes a putatively widespread species encompassing a vast area of

South America (from approximately latitude 11.0uN to 35.0uS),

distributed across several biomes. Our results, however, reveal

high genetic diversity within D. minutus that would suggest the

existence of numerous distinct species, leading to an important

increase in number of species. If this hypothesis is confirmed

through further studies, the existence of an increased number of

species with decreased range sizes would have important

consequences for the definition of centers of endemism and for

assessing conservation status.

Despite revealing a substantial amount of cryptic genetic

diversity within D. minutus sensu lato, our results also confirm

the existence of widespread Neotropical species of anurans. While

we cannot yet confirm which of the mitochondrial lineages within

the D. minutus complex will merit a status as separate species, we

can inversely conclude that in most cases, all samples assigned to

one mtDNA lineage should be conspecific. Although cases of

distinct amphibian species with low mtDNA differentiation exist

(e.g. [86]) and phenomena of mtDNA introgression can potentially

blur species identities (e.g. [122,123]), such cases remain excep-

tional. Therefore, these factors are unlikely to substantially affect

our calculation of range sizes according to which a total of eight

mtDNA lineages have ranges .100,000 km2 (lineages 2, 19, 33,

34, 36, 39 41, 42). In the most inflationist taxonomic scenario, with

each of these lineages representing separate species, our dataset

still provides evidence for a species of lowland Neotropical

amphibian (lineage 36) occupying an area of almost one million

km2, encompassing multiple biomes across a distance of about

1,600 km between its two most distant populations.

The most widespread lineages within D. minutus sensu lato

have distributions restricted to or centered in Brazil and occur

within rather open habitats, while lineage 2 of the D. minutus
group (with a range of almost 270,000 km2) occurs in rainforest.

Various of the lineages known from only few or single sites (e.g.,

lineages 8, 11, 12, 13, 14, 15, 16) occur in the Andean foothills or

on mountain slopes. Nevertheless, in the Andean area, a higher

sampling density is needed before it can be concluded with

certainty that those lineages are restricted to small ranges. Hence,

the distribution of mitochondrial lineages in the D. minutus group

indicates that in open lowland areas of South America, small-sized

species of anurans can be widespread.

A plea for collaboration in taxonomy and large scale
phylogeography

Whether a researcher is interested in taxonomic or biogeo-

graphic questions concerning widespread species groups and

complexes, this study points to several advantages of analysing

spatialy dense and geographically complete datasets. Large-scale

analyses are of course pivotal to understanding processes at a

continental level. Patterns may be misinterpreted when looking at

a limited geographical area and/or limited sample size. Wide-

spread groups suchs as D. minutus group are suitable for

continental analyses, but they are often associated with taxonomic

difficulties because of the lack of comprehensive datasets. Also,

certain biogeographic analyses, like those performed here, damand

extensive data. Through collaboration we can increase the

efficiency of data collection, thus overcoming the problem of

incomplete datasets.

The taxonomic and conservation crisis we are currently facing,

where some species will be extinct before the community becomes

aware of their existence [124], underscores the urgency and

importance of collaborative work. Species extinction represents the

loss of the genealogical and biogeographic information embedded

in its evolutionary history. Broad collaboration among scientists is

necessary to rapidly tackle taxonomic and biogeographic ques-

tions. As in other areas of science, we feel that in taxonomy and

biogeography the establishment of multi-investigator, multi-

institutional and multi-national consortia dealing with widely

distributed and taxonomically convoluted groups will improve

quality and speed of taxonomic revision, consequently improving

our understanding of biodiversity patterns, the evolutionary

processes that generated them, and the conservation status of

tropical organisms.

Supporting Information

Figure S1 16S genealogy of the genus Dendropsophus:

partial view of the 50% Maximum Clade Credibility tree derived

from Bayesian phylogenetic inference of 216 mitochondrial 16S

sequences of Hylidae species plus 28 exemplars of the D. minutus
group, that was performed for the substitution rate estimations

using the program BEAST 1.7.2. The Dendropsophus minutus
group is highlighted by the dashed line and the Dendropsophus
minutus complex by the grey box. Node numbers indicate

posterior probabilities which are only shown when higher than

0.8. Numbers between brakets indicate lineage number acording

with the GMYC results or GenBank accession numbers.

(DOCX)

Figure S2 A. Dendropsophus minutus tree with samples
names and annotations Part 1. 50% Maximum Clade

Credibility tree, lineages 1–18. Asterisks represent nodes with

probability equals to 1. Probabilities lower than 0.9 are not shown.

Annotations refer to samples of particular interest, mainly samples

collected at or close to the type locality of certain nominal taxa. B.
Dendropsophus minutus tree with samples names and
annotations Part 2. 50% Maximum Clade Credibility tree,

lineages 19–28. Asterisks represent nodes with probability equals

to 1. Probabilities lower than 0.9 are not shown. Annotations refer

to samples of particular interest, mainly samples collected at or

close to the type locality of certain nominal taxa. C. Dendropso-
phus minutus tree with samples names and annotations
Part 3. 50% Maximum Clade Credibility tree, lineages 29–36.

Asterisks represent nodes with probability equals to 1. Probabilities

lower than 0.9 are not shown. Annotations refer to samples of

particular interest, mainly samples collected at or close to the type

locality of certain nominal taxa. D. Dendropsophus minutus
tree with samples names and annotations Part 4. 50%

Maximum Clade Credibility tree, lineages 37–43. Asterisks

represent nodes with probability equals to 1. Probabilities lower

than 0.9 are not shown. Annotations refer to samples of particular

interest, mainly samples collected at or close to the type locality of

certain nominal taxa.

(DOCX)

Figure S3 PCA of climatic variables. PCA plots showing the

first two principal components separately for lineages 1–18 (left)

and 19–43 (right). Symbols and colours match those in Figs. 1–3.

Loadings of the first two principal components were as follows

(separated by colon): annual mean temperature 0.324, 0; mean

monthly temperature range 20.122, 0.274; isothermality 0.192, 0;

temperature seasonality 20.245, 20.13; maximum temperature

warmest month 0.269, 0; minimum temperature coldest month

0.336, 0; temperature annual range 20.214, 0.123; mean

temperature wettest quarter 0.274, 0; mean temperature driest
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quarter 0.336, 0; mean temperature warmest quarter 0.282, 0;

mean temperature coldest quarter 0.339, 0; annual precipitation

0.187, 20.292; precipitation wettest month 0.226, 0; precipitation

driest month 0, 20.477; precipitation seasonality 0, 0.421;

precipitation wettest quarter 0.224, 0; precipitation driest quarter

0, 20.482; precipitation warmest quarter 20.113, 20.184;

precipitation coldest quarter 0.132, 20.331. Main result of this

analysis: the first two principal components (PCs) accounted for

64% of the climatic variance, with highest loadings for temperature

variables along PC 1 (minimum temperature coldest month, mean

temperature driest quarter, mean temperature coldest quarter) and

precipitation variables along PC 2 (precipitation driest month,

precipitation seasonality, precipitation of driest quarter). The PCA

suggests that within the D. minutus group, the climatic niches (i.e.,

19 bioclimatic temperature and precipitation dimensions) are rather

similar, even when the two main groups are compared (i.e. lineages

1–18 vs. 19–43). Some lineages from the periphery of the known

geographic distribution of the group, including lineages 1–18, are

weakly separated (lineages 9, 11–13 15, 16).

(DOCX)

Figure S4 Spatial distribution models used as resis-
tance layers in the Circuit Scape analysis.
(DOCX)

Figure S5 Distribution of all mitochondrial lineages.
Map showing the distribution of all mitochondrial lineages in the

Dendropsophus minutus group as revealed by this study. Symbols

refer to those used in Figs. 1–3.
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sion numbers, voucher numbers and locality informa-
tion.
(CSV)

Table S2 Species used in the substitution rate estima-
tion with respective Genbank accession numbers.
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Table S3 Uncorrected pairwise p-distance among line-
ages and average within lineage p-distance.
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respective anealing temperatures.
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Fisher, and José M. Padial kindly provided sequences and/or tissues. Julian

Faivovich (Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivada-

via’’-CONICET) provided sequences of specimens from Argentina. PJRK

warmly acknowledges D. Bruce Means (Coastal Plains Institute and Land

Conservancy, USA) for the loan of additional critical tissue samples. Meike

Kondermann and Gabi Keunecke helped with laboratory procedures in

Braunschweig and Jakob Fahr provided usefull recommendations for GIS

analysis. Diana Flores was in charge of laboratory procedures at BioCamb,

Ecuador. Fieldwork in Guyana was made possible through the help of the

Iwokrama International Centre, particularly R. Thomas-Caesar and C. I.

Bovolo.

Author Contributions

Conceived and designed the experiments: MG MV JK. Performed the

experiments: MG AJC VGDO SL AF LSB FB IR RE GGU FG JMG MH

MJ PJRK AK RL ML JM JPP FJMR AS JCS MS MTR ET CFBH MV

JK. Analyzed the data: MG AJC AR SL MV JK. Contributed reagents/

materials/analysis tools: MG AJC VGDO SL AF LSB FB IR RE GGU

FG JMG MH MJ PJRK AK RL ML JM JPP FJMR AS JCS MS MTR ET

CFBH MV JK. Wrote the paper: MG AJC VGDO MV JK.

References

1. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, et al. (2007) Cryptic

species as a window on diversity and conservation. Trends Ecol Evol 22: 148–

155.
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