959 research outputs found

    An Experimental Investigation of Electrical Conductivities in Biopolymers

    Get PDF
    Tuberculosis is a devastating infectious disease causing many deaths worldwide. Recent investigations have implicated neutrophil extracellular traps (NETs) in the host response to tuberculosis. The aim of the current study was to obtain evidence for NETs release in the circulation during human tuberculosis. For this we measured the plasma concentrations of nucleosomes in conjunction with neutrophil elastase, in 64 patients with active pulmonary tuberculosis and 32 healthy controls. Patients with active tuberculosis had elevated plasma levels of nucleosomes and elastase when compared with local healthy blood donors. Furthermore nucleosome and elastase levels showed a positive correlation. These findings provide the first evidence for the release of NETs in the circulation of patients with active pulmonary tuberculosis

    Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography

    Get PDF
    We report the use of optical coherence tomography (OCT) to determine spatially localized optical attenuation coefficients of human axillary lymph nodes and their use to generate parametric images of lymphoid tissue. 3D-OCT images were obtained from excised lymph nodes and optical attenuation coefficients were extracted assuming a single scattering model of OCT. We present the measured attenuation coefficients for several tissue regions in benign and reactive lymph nodes, as identified by histopathology. We show parametric images of the measured attenuation coefficients as well as segmented images of tissue type based on thresholding of the attenuation coefficient values. Comparison to histology demonstrates the enhancement of contrast in parametric images relative to OCT images. This enhancement is a step towards the use of OCT for in situ assessment of lymph nodes

    Low Numbers of FOXP3 Positive Regulatory T Cells Are Present in all Developmental Stages of Human Atherosclerotic Lesions

    Get PDF
    BACKGROUND: T cell mediated inflammation contributes to atherogenesis and the onset of acute cardiovascular disease. Effector T cell functions are under a tight control of a specialized T cell subset, regulatory T cells (Treg). At present, nothing is known about the in situ presence of Treg in human atherosclerotic tissue. In the present study we investigated the frequency of naturally occurring Treg cells in all developmental stages of human atherosclerotic lesions including complicated thrombosed plaques. METHODOLOGY: Normal arteries, early lesions (American Heart Association classification types I, II, and III), fibrosclerotic plaques (types Vb and Vc) and 'high risk' plaques (types IV, Va and VI) were obtained at surgery and autopsy. Serial sections were immunostained for markers specific for regulatory T cells (FOXP3 and GITR) and the frequency of these cells was expressed as a percentage of the total numbers of CD3+ T cells. Results were compared with Treg counts in biopsies of normal and inflammatory skin lesions (psoriasis, spongiotic dermatitis and lichen planus). PRINCIPLE FINDINGS: In normal vessel fragments T cells were virtually absent. Treg were present in the intima during all stages of plaque development (0.5-5%). Also in the adventitia of atherosclerotic vessels Treg were encountered, in similar low amounts. High risk lesions contained significantly increased numbers of Treg compared to early lesions (mean: 3.9 and 1.2%, respectively). The frequency of FOXP3+ cells in high risk lesions was also higher compared to stable lesions (1.7%), but this difference was not significant. The mean numbers of intimal FOXP3 positive cells in atherosclerotic lesions (2.4%) was much lower than those in normal (24.3%) or inflammatory skin lesions (28%). CONCLUSION: Low frequencies of Treg in all developmental stages of human plaque formation could explain the smoldering chronic inflammatory process that takes place throughout the longstanding course of atherosclerosis

    Comparative study of breakwater crown wall – calculation methods

    Get PDF
    An investigation was undertaken consisting of a state-of-the-art and comparative analysis of currently available methods for calculating the structural stability of wave walls in sloping breakwaters. A total of six design schemes are addressed. The conditions under which the formulations and ranges of validity are explicitly indicated by their authors, are given. The lack of definition in parameters to be used and aspects not taken into account in their investigations are discussed and the results of this analysis are given in a final table

    Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance

    Get PDF
    The plant pathogen Pseudomonas syringae pv. phaseolicola, which causes halo blight disease of beans, contains a 106kb genomic island PPHGI-1. PPHGI-1 carries a gene, avrPphB, which encodes an effector protein that triggers a resistance response in certain bean cultivars. Previous studies have shown that when PPHGI-1 is excised from the bacterial chromosome avrPphB is down regulated and therefore the pathogen avoids triggering the host’s defence mechanism. Here we investigate whether the down regulation of avrPphB is caused by supercoiling of PPHGI-1. We also investigate the effect of a PPHGI-1 encoded type 1A topoisomerase, TopB3, on island stability and the bacterial pathogenicity in the plant. Supercoiling inhibitors significantly increased the expression of avrPphB but did not affect the excision of PPHGI-1. An insertional mutant of topB3 displayed an increase in avrPphB expression and an increase in PPHGI-1 excision as well as reduced population growth in resistant and susceptible cultivars of bean. These results suggest an important role for topoisomerases in the maintenance and stability of a bacterial encoded genomic island and demonstrate that supercoiling is involved in the down regulation of an effector gene once the island has been excised, allowing the pathogen to prevent further activation of the host defence response

    A New Twist in the Photophysics of the GFP Chromophore: A Volume-Conserving Molecular Torsion Couple

    Get PDF
    The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck-Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups are coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples

    Formation of a morphine-conditioned place preference does not change the size of evoked potentials in the ventral hippocampus–nucleus accumbens projection

    Get PDF
    Abstract In opioid addiction, cues and contexts associated with drug reward can be powerful triggers for drug craving and relapse. The synapses linking ventral hippocampal outputs to medium spiny neurons of the accumbens may be key sites for the formation and storage of associations between place or context and reward, both drug-related and natural. To assess this, we implanted rats with electrodes in the accumbens shell to record synaptic potentials evoked by electrical stimulation of the ventral hippocampus, as well as continuous local-field-potential activity. Rats then underwent morphine-induced (10 mg/kg) conditioned-place-preference training, followed by extinction. Morphine caused an acute increase in the slope and amplitude of accumbens evoked responses, but no long-term changes were evident after conditioning or extinction of the place preference, suggesting that the formation of this type of memory does not lead to a net change in synaptic strength in the ventral hippocampal output to the accumbens. However, analysis of the local field potential revealed a marked sensitization of theta- and high-gamma-frequency activity with repeated morphine administration. This phenomenon may be linked to the behavioral changes—such as psychomotor sensitization and the development of drug craving—that are associated with chronic use of addictive drugs
    corecore