1,688 research outputs found

    Diffusive benefits of cylinders in front of a Schroeder diffuser

    Get PDF
    A numerical investigation is performed into the diffusive effects of cylinders positioned in front of a Schroeder diffuser. A regular line of cylinders is shown to offer notable improvements to diffusion from a periodic Schroeder device, provided lateral cylinder spacing is incommensurable with the Schroeder period width. Further investigation considers angular dependence and low frequency results in greater detail, as well as the effects on narrowband and modulated Schroeder devices. An optimization procedure is subsequently performed to investigate the effects of an irregular cylinder arrangement, which provides further diffusive benefits. (C) 2010 Acoustical Society of America

    Coarse-Graining and Renormalization Group in the Einstein Universe

    Get PDF
    The Kadanoff-Wilson renormalization group approach for a scalar self-interacting field theor generally coupled with gravity is presented. An average potential that monitors the fluctuations of the blocked field in different scaling regimes is constructed in a nonflat background and explicitly computed within the loop-expansion approximation for an Einstein universe. The curvature turns out to be dominant in setting the crossover scale from a double-peak and a symmetric distribution of the block variables. The evolution of all the coupling constants generated by the blocking procedure is examined: the renormalized trajectories agree with the standard perturbative results for the relevant vertices near the ultraviolet fixed point, but new effective interactions between gravity and matter are present. The flow of the conformal coupling constant is therefore analyzed in the improved scheme and the infrared fixed point is reached for arbitrary values of the renormalized parameters.Comment: 18 pages, REVTex, two uuencoded figures. (to appear in Phys. Rev. D15, July) Transmission errors have been correcte

    Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor

    Get PDF
    Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimised from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2-family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer

    Multi-scale approaches for the simulation of cardiac electrophysiology: II - tissue-level structure and function

    Get PDF
    Computational models of the heart, from cell-level models, through one-, two- and three-dimensional tissue-level simplifications, to biophysically-detailed three-dimensional models of the ventricles, atria or whole heart, allow the simulation of excitation and propagation of this excitation, and have provided remarkable insight into the normal and pathological functioning of the heart. In this article we present equations for modelling cellular excitation (i.e. the cell action potential) from both a phenomenological and a biophysical perspective. Hodgkin-Huxley formalism is discussed, along with the current generation of biophysically-detailed cardiac cell models. Alternative Markovian formulations for modelling ionic currents are also presented. Equations describing propagation of this cellular excitation, through one-, two- and three-dimensional idealised or realistic tissues, are then presented. For all types of model, from cell to tissue, methods for discretisation and integration of the underlying equations are discussed. The article finishes with a discussion of two tissue-level experimental imaging techniques – diffusion tensor magnetic resonance imaging and optical imaging – that can be used to provide data for parameterisation and validation of cell- and tissue-level cardiac models

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    A powerful intervention: general practitioners' use of sickness certification in depression

    Get PDF
    <b>Background</b> Depression is frequently cited as the reason for sickness absence, and it is estimated that sickness certificates are issued in one third of consultations for depression. Previous research has considered GP views of sickness certification but not specifically in relation to depression. This study aimed to explore GPs views of sickness certification in relation to depression.<p></p> <b>Methods</b> A purposive sample of GP practices across Scotland was selected to reflect variations in levels of incapacity claimants and antidepressant prescribing. Qualitative interviews were carried out between 2008 and 2009.<p></p> <b>Results</b> A total of 30 GPs were interviewed. A number of common themes emerged including the perceived importance of GP advocacy on behalf of their patients, the tensions between stakeholders involved in the sickness certification system, the need to respond flexibly to patients who present with depression and the therapeutic nature of time away from work as well as the benefits of work. GPs reported that most patients with depression returned to work after a short period of absence and that it was often difficult to predict which patients would struggle to return to work.<p></p> <b>Conclusions</b> GPs reported that dealing with sickness certification and depression presents distinct challenges. Sickness certificates are often viewed as powerful interventions, the effectiveness of time away from work for those with depression should be subject to robust enquiry

    Tripartite interactions between two phase qubits and a resonant cavity

    Full text link
    The creation and manipulation of multipartite entangled states is important for advancements in quantum computation and communication, and for testing our fundamental understanding of quantum mechanics and precision measurements. Multipartite entanglement has been achieved by use of various forms of quantum bits (qubits), such as trapped ions, photons, and atoms passing through microwave cavities. Quantum systems based on superconducting circuits have been used to control pair-wise interactions of qubits, either directly, through a quantum bus, or via controllable coupling. Here, we describe the first demonstration of coherent interactions of three directly coupled superconducting quantum systems, two phase qubits and a resonant cavity. We introduce a simple Bloch-sphere-like representation to help one visualize the unitary evolution of this tripartite system as it shares a single microwave photon. With careful control and timing of the initial conditions, this leads to a protocol for creating a rich variety of entangled states. Experimentally, we provide evidence for the deterministic evolution from a simple product state, through a tripartite W-state, into a bipartite Bell-state. These experiments are another step towards deterministically generating multipartite entanglement in superconducting systems with more than two qubits

    Metabolic flexibility as a major predictor of spatial distribution in microbial communities

    Get PDF
    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure
    corecore