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Abstract 

Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the 

pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as 

therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular 

effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimised from the purine template 

of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and 

CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell 

lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is 

the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK 

activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) 

phosphorylation, reduced phosphorylation of RNA polymerase II and induction of cell cycle 

arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to 

other small molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in 

expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of 

MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 

treatment and this associates with synergistic antiproliferative activity after combined treatment 

with CCT068127 and ABT263, a BCL2-family inhibitor. These findings support the rational 

combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of 

human cancer. 

1. Introduction 

  Loss of cell cycle control is a hallmark of human cancer and this can be achieved by 

over-expression of the CDK partner cyclins or by decreased expression or mutation of CDK 

inhibitors (CDKIs) from the INK4 and CIP/KIP families (Malumbres and Barbacid, 2009). For 

example, amplification of the 19q12 locus has been reported in up to 15% of estrogen receptor 

(ER)-negative breast cancers, typically resulting in amplification of CCNE1 (cyclin E1) (Adélaïde 
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et al., 2007; Natrajan et al., 2012). The G1-to-S-phase transition is regulated by CDK4/cyclin D 

and CDK6/cyclin D. CDK2/cyclin A, CDK2/cyclin E and CDK1/cyclin A mediate progression 

through S phase to G2 and CDK1/cyclin B activity is involved in the initiation of mitosis 

(Malumbres and Barbacid, 2009). Importantly, CDK activities converge to phosphorylate the RB 

protein that functions to suppress the activity of E2F-1, which in turn is required to stimulate the 

transcription of genes required for DNA synthesis. Current evidence supports a model whereby 

cumulative phosphorylation of RB displaces bound histone deacetylase (HDAC) and E2F-1, 

relieving transcriptional repression and permitting gene transcription from E2F-1-dependent 

promoters (Zhang et al., 2000).  

Targeting of CDK2/cyclin E activity by RNA interference or by small molecules is 

effective against human breast cancer cell lines exhibiting CCNE1 amplification (Natrajan et al., 

2012). CDKs are not only involved in orchestrating the correct passage through the cell cycle, 

they are also key mediators of transcriptional control, in part by regulation of RNA polymerase II 

(Bregman et al., 2000). CDK7/cyclin H and CDK9/cyclin T phosphorylate RNA polymerase II on 

its C-terminal, which is permissive for initiation and elongation of nascent mRNA transcripts. 

Interestingly, a number of transcripts involved in cell cycle control and apoptosis are highly 

responsive to alterations in transcriptional regulation, the mRNAs having short half-lives, and 

are thus rapidly lost following inhibition of transcription (Lam et al., 2001). Hence, some CDK 

inhibitors are capable of suppressing the transcription of key genes such as MCL1, MYC, 

CCNB2 (cyclin B2) and several IAP family members (BIRC1, BIRC2 and BIRC3). Therefore, 

CDK inhibitors have the potential to perturb cell cycle progression through direct catalytic 

inhibition of CDK/cyclin complexes, loss of expression of the partner cyclins and also sensitize 

cells to pro-apoptotic stimuli.  

While it has been reported that CDKs can be dispensable for survival or cell cycle 

progression, it appears that this is due to a high degree of redundancy among the CDKs and 
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their partner cyclins. For example, CDK2 knockout in mice proved to be non-lethal and RNAi-

mediated suppression of CDK2 did not affect cell proliferation (Ortega et al., 2003; Tetsu and 

McCormick, 2003). However, CDK1 is essential for survival in mice (Diril et al., 2012) and dual 

suppression of CDK1 and CDK2 presumably overcomes any redundancy in CDK2 function, 

resulting in cell cycle arrest and/or apoptosis (L'Italien et al., 2006). Combinatorial targeting of 

multiple CDKs therefore remains an attractive approach for cancer therapy (Whittaker et al., 

2017).  

We embarked upon a drug discovery program to develop CDK2 and 9 inhibitors that 

exhibited significantly improved pharmacological properties compared to the parental clinical 

drug seliciclib (CYC202, R-roscovitine) (McClue et al., 2002; Raynaud et al., 2005; Whittaker et 

al., 2004). To this end we identified CCT068127, a novel tri-substituted purine with improved 

potency, selectivity, metabolic stability and anti-tumor activity compared to seliciclib (Wilson et 

al., 2011). Here we describe the biochemical and cellular characterization of CCT068127 and 

identify synergistic drug combinations to further improve the efficacy of such CDK2/9 inhibitors 

for the treatment of colorectal cancer. 

 

2. Materials and Methods  

2.1 Cell culture and reagents 

All human cancer cell lines (HT29, colorectal adenocarcinoma; HCT116, colon 

carcinoma; COLO205, colon adenocarcinoma; RKO, colon carcinoma; SKMEL28, malignant 

melanoma; WM266.4, malignant melanoma) were obtained from the American Type Culture 

Collection and grown in the recommended culture medium, supplemented with 10% FBS, at 

37°C and an atmosphere of 5% CO2. Cell lines were passaged for less than 6 months upon 

receipt. CCT068127 was synthesized as described (Wilson et al., 2011) and solubilized in 
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dimethyl sulfoxide to a stock concentration of 10 mmol/L. The BCL2 family inhibitor ABT263 was 

purchased from Selleck Chemicals (Tse et al., 2008). The ERK inhibitor VTX-11e was 

purchased from Tocris (Aronov et al., 2009).  

2.2 In vitro biochemical kinase assays 

 Profiling of CCT068127 against a panel of ~30 recombinant human kinases was 

performed as previously described (McIntyre et al., 2010; Wang et al., 2004; Wilson et al., 2011). 

2.3 Enzyme expression and purification 

 The gene encoding full length human CDK2 was cloned into the pGEX-6P-1, and 

transformed into BL21(DE3)pLysS cells (Promega). Cultures were grown for 2-3 h at 37 °C, and 

then the temperature was decreased to 18°C prior to induction with 0.25 mmol/L IPTG at 

OD600=0.6. The cultures were allowed to grow for an additional 20-24 h at 18 °C and were 

harvested by centrifugation. All purification steps were performed by FPLC at 4 ºC.  Harvested 

cells were resuspended in 50 mmol/L HEPES buffer (pH 7.5) containing 150 mmol/L NaCl, 2 

mmol/L DTT and 0.5 mg/mL lysozyme at 4 °C for 1 h.  After sonication and centrifugation (1 h at 

29000 x g), the supernatant was purified by immobilized Glutathione Sepharose 

chromatography (GE LifeSciences). Following incubation of peak fractions with 3C protease 

(20:1) at 4°C, the cleaved GST-tag was separated by size exclusion chromatography using a 

Superdex 75 (26/60) column, and eluted with 50 mmol/L HEPES buffer (pH 7.4) containing 

150 mmol/L NaCl and 1 mmol/L DTT. Purified CDK2 was buffer exchanged into 100 mmol/L 

Na/K phosphate buffer (pH 7.4) containing 1 mmol/L DTT and concentrated to 10 mg/mL for 

crystallisation. 

2.4 X-ray crystallography 

 Crystallisation was performed at 20ºC using the sitting drop vapour diffusion method.  

Crystals of human CDK2 were grown from 0.1 M HEPES pH 7.5 and 10% PEG3350 over a 
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reservoir of 50 mmol/L HEPES pH7.5 and 50 mmol/L Na/K phosphate buffer (pH 7.4). Crystals 

were harvested in cryo-protectant containing 1 mmol/L CCT068127 (50 mmol/L HEPES pH 7.5, 

50 mmol/L Na/K phosphate buffer (pH 7.4), 15% PEG3350, 25% (v/v) ethylene glycol, 1% 

DMSO and 1 mmol/L CCT068127) 24 h prior to data collection. X-ray diffraction data were 

recorded at Diamond Light Source (Harwell, Oxfordshire, UK). Data processing was carried out 

using XDS, POINTLESS/AIMLESS (Evans, 2011) and other programs of the CCP4i suite 

(Collaborative Computational Project, 1994) run through the CCP4i2 GUI. The structure was 

solved by molecular replacement using PHASER (McCoy et al., 2007) and pdb 3QXP as a 

starting model. REFMAC (Murshudov et al., 1997) was employed for refinement, and model 

building was performed using COOT (Emsley et al., 2010).  Figures were prepared using 

PYMOL (Schrödinger, LLC). The coordinates of the CDK2-CCT068127 crystal structure have 

been deposited in the Protein Data Bank with accession code 5MHQ. 

2.5 Cell proliferation 

  The effect of CCT068127 and seliciclib on cancer cell proliferation was measured using 

the sulfurhodamine B (SRB) assay as described previously (Whittaker et al., 2004). For long 

term colony formation assays, HT29 colon cancer cells were seeded into 12 well plates and 

then treated with the inhibitors for 5 d. Compounds were then washed away and the cells were 

allowed to proliferate for a further 7 d. After this, cells were fixed with 4% formaldehyde for 30 

min, cellular protein and DNA was stained with 0.5% crystal violet solution for 30 min and 

washed in water to remove excess dye. The colony plates were imaged on a FluorChem E 

System (ProteinSimple). Bound dye was subsequently resolubilised in 10% acetic acid and 

absorbance measured at 595 nm to quantify cell number. 
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2.6 Western blotting 

 Cells were seeded at a density of approximately 4x105 cells/well in 6 well plates and 

incubated overnight prior to drug treatment. They were then harvested in NP40 buffer as 

previously described (Whittaker et al., 2004) and lysates were normalized using the Bradford 

assay (BioRad). Equal amounts of protein were resolved by SDS-PAGE using 4-12% bis-tris 

gels (or 6% tris-glycine gels to demonstrate a mobility shift in RB in Figure 3D) and transferred 

to nitrocellulose membranes (Life Technologies). The antibodies used in this study are 

described in Supplementary Table 1. Primary antibodies were labeled with fluorescently-

labeled IRDye secondary antibodies (Li-Cor) and proteins were visualized using an Odyssey 

scanner (Li-Cor).  

2.7 Cell cycle effects  

 Cell cycle analysis was performed as previously described (Whittaker et al., 2004). 

Briefly, for cell cycle distribution profiles, cells were exposed to inhibitors for the indicated times, 

then attached cells were harvested by trypsinization. Cells were washed in PBS and fixed in ice-

cold 70% ethanol. Cellular DNA was stained using propidium iodide and analyzed by flow 

cytometry. To determine the number of cells undergoing DNA synthesis, cells were pulsed with 

10 µmol/L Bromodeoxy-uridine (BrdU, Sigma) for 30 minutes prior to harvesting. Cells were 

fixed in 70% ethanol and nuclei were isolated using 2 mol/L HCl, 0.2 mg/ml pepsin. Incorporated 

BrdU was detected using an anti-BrdU antibody coupled to FITC (Molecular Probes) and cells 

were quantified by flow cytometry.  

2.8 Gene expression analysis 

 Cells were exposed to the inhibitors for 24 h prior to RNA extraction with Trizol 

(Invitrogen) and subsequent mRNA purification by Oligotex (Qiagen). 8 µg of mRNA was 

labeled with either Cy3 or Cy5 dCTP via RT-PCR and the labeled probe was then purified and 2 
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µg of each sample was hybridized to a custom cDNA array of 5808 genes spotted onto poly-

lysine coated glass slides at 65˚C overnight. Slides were scanned using a GenePix 4000B 

(Axon Labs) and spots verified using GenePix software. Data analysis was performed in 

GeneSpring (Silicon Genetics). Gene expression data were analyzed relative to the DMSO 

controls by comparative marker selection using a T-test to rank expression changes in Gene-E 

(http://www.broadinstitute.org/cancer/software/GENE-E/). A ≥ 2-fold change in expression was 

used to refine the selection criteria. Gene expression profiles were analyzed using Connectivity 

Map (Lamb et al., 2006) and STRING databases (Franceschini et al., 2013). 

For RT-qPCR assays mRNA was isolated from cancer cells using RNeasy Mini kit 

(Qiagen) according to the manufacturer’s recommendations. Extracted RNA was used to 

generate cDNA with the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). 

Primer combinations for the respective genes were designed according to the Harvard Primer 

Bank (http://pga.mgh.harvard.edu/primerbank) and are listed in Supplementary Table 2. Gene 

expression was analyzed using Power SYBR Green gene expression assays (Life 

Technologies). Quantitative PCR reaction was carried out in triplicate on the ViiA 7 Real-Time 

PCR System (Applied Biosystems).  

2.9 siRNA transfection 

 HT29 cells were reversed transfected in 6 well or 96 well plates using 0.4% RNAiMAX 

(Life Technologies) transfection reagent and 25 nM of ON-TARGETplus siRNA (Dharmacon) in 

OptiMem. Cells were then cultured for 4 d and analysed as required. A non-targeting siRNA 

(siCTRL) and 4 different siRNAs targeting CDK5 were used (siCTRL: D-001810-01-05, siCDK5: 

J-003239-9, J-003239-10, J-003239-11, J-003239-12). 
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2.10 Statistical analysis 

 For statistical analysis of protein expression data, the mean of 3 independent repeats 

per condition was used for two-tailed t-tests to determine significance of change, relative to the 

appropriate control. This was deemed the most appropriate test as nonparametric tests such as 

the Mann-Whitney U-test require greater sample numbers to enable significance testing, as 

discussed by Krzywinski and Altman (Krzywinski and Altman, 2014). 

3. Results 

3.1 CCT068127 is a potent and stable inhibitor of CDK2 and 9 

 We previously reported a medicinal chemistry campaign to generate more potent, 

selective and metabolically stable analogs of the clinical cyclin-dependent kinase inhibitor 

seliciclib (CYC202, R-roscovitine) (Wilson et al., 2011).  CCT068127 was identified as having 

significantly increased potency towards human CDK1/cyclin B (15-fold), CDK2/cyclin E (22-fold), 

CDK5 (15-fold) and CDK9/cyclin T (11-fold) kinase activities, when compared to the parental 

seliciclib (Table 1). Importantly, selectivity towards CDK2 and 9 versus CDK4 and CDK7 is 

enhanced compared to seliciclib, since the concentration required to inhibit kinase activity by 

50% (IC50) remained relatively unchanged for CDK4/cyclin D and CDK7/cyclin H. Although the 

potency of CCT068127 for CDK1 is increased over seliciclib, the IC50 is still relatively high at 

1.12 µM. Overall, CCT068127 showed greatest in vitro potency against CDK2, CDK5 and CDK9. 

CCT068127 displays notably improved cellular activity compared to seliciclib, with the 

average concentration to reduce cell proliferation by 50% (GI50) in a panel of human colon 

cancer and melanoma cell lines being 0.5 µmol/L versus 12 µmol/L respectively. This 20-fold 

increase in cellular potency was consistent with the enhanced activity against CDK2, CDK5 and 

CDK9 (Table 2).  In addition, we have previously reported that CCT068127 displays greater 

metabolic stability than seliciclib (Wilson et al., 2011). 
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3.2 Crystal structure of CCT068127 bound to CDK2 

Based on structure-activity relationships for synthesized analogs (Wilson et al., 2011) we 

hypothesised that the more potent inhibition of CDK2 and CDK9 for CCT068127 in comparison 

with seliciclib (Table 1) is due to the presence of the pyridyl nitrogen and the methyl group of 

defined stereochemistry in the hydroxyalkyl side chain of CCT068127 (Figure 1A). Our initial in 

silico docking suggested that, compared to seliciclib, the hydroxyl group of CCT068127 could 

form an additional hydrogen bond with Asp145 of the DFG motif in human CDK2 (data not 

shown).  

To determine the precise binding mode, we determined the X-ray crystal structure of 

CCT068127 with CDK2 (Figure 1B). The CCT068127-CDK2 complex formed crystals with 

space group P212121 that diffracted to 1.3Å resolution.  The structure was refined to Rfactor and 

Rfree values of 19.6 % and 23.4 %, respectively (Supplementary Table 3). This shows that 

CCT068127 acts as a Type I kinase inhibitor of CDK2 and binds to the hinge region of the ATP 

binding pocket through two hydrogen bonds, formed by the purine N7 and the exocyclic nitrogen 

at C6 of the purine scaffold that interact with the main chain amine and carbonyl of Leu83, 

respectively (Figure 1B&C). In addition, our high-resolution electron density map of the 

inhibitor-CDK2 complex has allowed unambiguous assignment of the conformation of the 

hydroxymethyl moiety. As predicted by our modelling, the side chain hydroxyl forms an 

additional hydrogen bond with the carboxylic acid side chain of Asp145, part of the DFG motif. 

Electron density indicates two alternate conformations for the hydroxyl group, with the minor 

pose forming an interaction with the main chain carbonyl of Gln131. Also CCT068127 forms 

multiple van der Waals (hydrophobic) interactions with surrounding residues (3.4Å < d < 4.0Å). 

The purine core is sandwiched between Ile10 and Leu134, with the N9-isopropyl moiety 

stacking up against the gatekeeper residue Phe80.   
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Superimposition of CDK2 structures bound to CCT068127 and seliciclib illustrates a key 

rotation of the C2 substituent that orients the pendant hydroxyl moiety towards Asp145. The 

additional hydrogen bound formed in this altered pose provides a plausible explanation for the 

increased potency CCT068127 relative to seliciclib (Figure 1D).  The pyridine moiety of 

CCT068127 is slightly shifted relative to the phenyl group of seliciclib (Figure 1D) possibly 

resulting from the engagement of the pyridine nitrogen in water-mediated hydrogen bonds with 

CDK2. 

3.3 Inhibition of CDK2 and CDK9 activity correlates with decreased substrate 

phosphorylation in cells 

 To confirm that CCT068127 retains activity against CDKs in cells, the phosphorylation of 

selected CDK substrates was determined. We used a cell-based assay for protein phosphatase 

1 phosphorylation to measure CDK1 activity following compound treatment. PP1 

phosphorylation at T320 shows inhibition with an IC50 of 6 µM for CCT068127 and 71 µM for 

seliciclib, 4-9 times greater than the respective GI50 values (Supplementary Figure 1) (Kwon et 

al., 1997). Of note, cyclin B1 expression was reduced only at higher concentrations, with an IC50 

of 15 µM for CCT068127 and >100 µM for seliciclib, suggesting that loss of cyclin B1 

contributes to, but is not primarily responsible for, the anti-proliferative activity of these 

compounds. Phosphorylation of the RB protein by CDKs facilitates DNA synthesis and cell cycle 

progression through the displacement of HDACs and E2F family transcription factors from RB 

(Brehm et al., 1998).  The phosphorylation status of RB was therefore assessed following a 24 h 

exposure to CCT068127 or seliciclib in HT29, RKO and COLO205 human colon cancer cells 

(Figure 2A, Supplementary Figure 2A).  We found that a concentration of 3 µmol/L 

CCT068127 or greater reduces phosphorylation of RB at S780, whereas 30 µmol/L seliciclib is 

required to elicit the same effect, consistent with at least a 10-fold greater potency of 

CCT068127 over seliciclib in the biochemical assays with recombinant proteins. Notably, the 
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inhibition of RB phosphorylation was only partial (~50%) as determined by quantification of the 

blots and was less pronounced in the COLO205 cells, due to loss of total protein (Figure 2B, 

Supplementary Figure 2B).  

In addition to effects on the cell cycle mediated through inhibition of RB phosphorylation, 

CDKs are known to regulate transcription through modification of RNA polymerase II, which is 

required for the generation of some transcripts arising from pol II-dependent promoters 

(Oelgeschlager, 2002).  Phosphorylation of RNA polymerase II at S5 and S2 is catalyzed by 

CDK7 and CDK9 respectively, although other CDKs have also been shown to target these sites 

(Jeronimo et al., 2016).  Inhibition of these CDKs by compounds such as flavopiridol and 

seliciclib has been shown to have dramatic effects on the transcriptional machinery leading to a 

profound inhibition of transcription (Lam et al., 2001; Whittaker et al., 2007; Whittaker et al., 

2004). RNA polymerase II phosphorylation was assessed at S2 following treatment with 

CCT068127 or seliciclib (Figure 2A, Supplementary Figure 2A).  We found that inhibition of 

RNA polymerase II phosphorylation occurs following treatment with 3 µmol/L or greater 

CCT068127.  Seliciclib is less potent, again requiring approximately 30 µmol/L to reduce RNA 

polymerase II phosphorylation to equivalent levels. This is likely in part due to loss of total 

protein as previously observed (Whittaker et al., 2004). In contrast to RB, RNA polymerase II S2 

phosphorylation was more completely inhibited (up to 80%) by both compounds (Figure 2B, 

Supplementary Figure 2B). Interestingly, we found that phosphorylation of S5 of RNA 

polymerase II was less sensitive to treatment and reflected loss of the total protein more than 

specific loss of phosphorylation (data not shown). 

Time-course experiments using a 3xGI50 concentration of both compounds were also 

performed in HT29 and RKO human colon cancer cells.  Equiactive concentrations of each 

compound were used to enable a comparison of the molecular alterations induced by each 

compound at concentrations that have similar effects on cell proliferation/survival. We found that 
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both compounds inhibit RB phosphorylation with similar kinetics from 16-24 h (Figure 2C&D, 

Supplementary Figure 2C&D). RNA polymerase II phosphorylation is inhibited more rapidly, 

with both compounds reducing phosphorylation at S2 from 4-24 h (Figure 2C&D, 

Supplementary Figure 2C&D).  As expected, the inhibition of RNA polymerase II 

phosphorylation is associated with decreased expression of the protein at later time points. 

These data demonstrate that loss of RNA polymerase II phosphorylation precedes loss of RB 

phosphorylation. To evaluate whether the expression of CDKs was being modulated by seliciclib 

and CCT068127, the levels of CDK1, 2, 5 and 9 were assessed following a 24 h exposure to 

these compounds (Supplementary Figure 3A). The expression of these proteins was largely 

unaltered, with the exception of CDK9, which was decreased at 30-100 µM seliciclib and 3-10 

µM CCT068127 in HT29 cells and at 100 µM seliciclib and 10 µM CCT068127 in RKO cells. The 

expression of cyclins E1, T1, B1 and D1 was also assessed and cyclin D1 levels were found to 

be decreased by CCT068127 and seliciclib (Supplementary Figure 3A); more modest 

decreases in cyclin T1 were observed with CCT068127. Notably, cyclin E1 expression was 

increased by seliciclib (10-30 µM) and by CCT068127 (0.3-1 µM) (Supplementary Figure 3A). 

This may reflect inhibition of CDK2, which is known to phosphorylate cyclin E1 and target it for 

degradation (Clurman et al., 1996), and has been reported as a marker of CDK2 inhibition 

(Sakurikar et al., 2016). We could not detect expression of the p35 regulatory subunit of CDK5, 

which is reportedly expressed primarily in post-mitotic neurons, although a role in cancer is 

emerging (Shupp et al., 2017). To specifically address the effect of reduced CDK5 activity on 

cell proliferation, we used 4 different siRNAs to deplete HT29 cells of CDK5 by 80-90% 

(Supplementary Figure 4A). Under these conditions, we observed minor reductions of up to 

10-20% in proliferation with 2 of the 4 siRNAs tested, with the remaining 2 siRNAs having no 

effect despite good knockdown of CDK5 expression (Supplementary Figure 4B). A time 

course of seliciclib and CCT068127 showed that the decrease in CDK9, cyclin T1 and cyclin D1 
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expression occurred at 16-24 h (Supplementary Figure 3B), whereas inhibition of RNA 

polymerase II phosphorylation was observed as early as 4 h (Figure 2C&D).  This is consistent 

with direct inhibition of CDK9 mediating the early effects of these compounds, though at later 

time points effects on transcription may also contribute to loss of CDK activity eg. by cyclin 

depletion. 

3.4 Inhibition of cell cycle progression and DNA synthesis by CCT068127 

 To investigate the cell cycle effects of CCT068127, HT29 colon cancer cells were 

exposed to the respective 3xGI50 concentrations of seliciclib or CCT068127 for 4, 12 and 24 h 

and the effect on cell cycle distribution and DNA synthesis was assessed by incorporation of PI 

measured by flow cytometry (Figure 3A).  A modest reduction of the proportion of cells with 2n 

DNA content (~10%) and an increase in cells with 4n DNA content (~10%) is seen with both 

compounds (Figure 3B). CCT068127 and seliciclib both blocked DNA synthesis, as determined 

by BrdU incorporation, although CCT068127 achieved this more rapidly than seliciclib and with 

14-fold greater potency (Figure 3C).  In both cases, the block in DNA synthesis is near 

complete at 24 h. Analysis of parallel treatments demonstrated a loss of RB phosphorylation as 

demonstrated by a mobility shift in the protein on SDS-PAGE (Figure 3D). 

3.5 Gene expression profiling of seliciclib analogs  

 In order to explore the potential similarities between seliciclib and CCT068127 in an 

unbiased manner, gene expression profiling was performed on HT29 human colon cancer cells 

treated with the respective 3xGI50 concentrations of the inhibitors for 24 h.  As a control, cells 

were also treated with an inactive analog of seliciclib, CCT068152 and mRNA expression was 

measured. This compound displays no inhibitory activity against purified CDKs, has a GI50 > 50 

µM on HT29 cells and does not inhibit RB phosphorylation (Supplementary Figure 5). 

Comparison with this compound would potentially highlight any off-target effects of the amino-
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purine chemical backbone of the series. CCT068152 was used at an equimolar concentration 

when compared to seliciclib. Gene expression was determined using custom expression arrays 

(Whittaker et al., 2007). A table showing the transcriptional changes induced by each compound 

is presented in Supplementary Table 4.  When the gene expression changes induced by 

seliciclib and CCT068127 compound are plotted against each other they show good 

concordance (Figure 4A).  

          We found that seliciclib and CCT068127 share a core set of 198 genes (out of a total of 

577 affected) that are either increased or decreased in expression following treatment (Figure 

4B). This is consistent with the view that CCT068127 retains some of the same characteristics 

as seliciclib, although other effects may contribute. Of these shared 198 genes, the expression 

of only 10 is also altered by the inactive analog CCT068152, suggesting that these are likely off-

target effects whereas the others are on-target. In fact we found that the inactive analog 

changes the expression of only 37 genes, markedly fewer than either seliciclib or CCT068127. 

For further analysis, genes that were altered in expression by CCT068152 were excluded. 

The mRNA expression changes induced by treatment of HT29 cells with either seliciclib 

or CCT068127 were used to define a signature for each compound by identifying genes altered 

in expression by ≥ 2-fold following treatment. We then analyzed these signatures for similarity 

to known drug-induced gene expression changes using the Connectivity Map (Lamb et al., 

2006). Strikingly, signatures for both compounds show a high level of correlation with those of 

other small molecule CDK inhibitors, namely 0175029-0000 (Khan et al., 2012), alsterpaullone 

(Schultz et al., 1999) and GW8510 (Bramson et al., 2001) as well as HDAC inhibitors 

vorinostat/SAHA (Richon et al., 1998), trichostatin A (Yoshida et al., 1990), valproic acid 

(Gottlicher et al., 2001) (Supplementary Tables 5 and 6).  

We also utilized the STRING database (Franceschini et al., 2013) to look for functional 

associations between genes with altered expression in response to CDK inhibition 
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(Supplementary Figure 6). A cluster of genes involved in G2/M cell cycle progression is 

immediately evident, including decreased expression of several mitosis-related genes, including 

PLK1, CCNB2, AURKA, AURKB, CDC25B, UBE2C and CENPF (Supplementary Figure 6). 

These changes could bring about a G2/M phase arrest, which would be consistent with the 4n 

DNA population reflecting an increased G2/M phase and the reduced transcriptional output 

induced by the CDK inhibitors as we have previously characterized for seliciclib (Whittaker et al., 

2007). We confirmed these gene expression changes by RT-qPCR (Figure 4C). Alternatively, 

this could also reflect a population of G1 phase cells with 4n DNA content, which may arise 

through mitotic slippage, due to premature loss of CDK1/cyclin B activity (Rieder and Maiato, 

2004). 

As part of the overall core transcriptional profile determined by microarray (see above) 

we identified transcription factors downstream of the MAPK pathway whose expression is 

increased in response to the CDK inhibitors; these changes were also confirmed by RT-qPCR 

(Figure 4C). For example, the expression of the transcription factor-encoding genes EGR1 

(coding for early growth response protein 1) and IER2 (encoding immediate early response 2) 

was induced (Boros et al., 2009; Hodge et al., 1998). In contrast, the expression of DUSP6 – 

encoding dual specificity phosphatase 6 that acts as a negative regulator of ERK2 by 

decreasing phosphorylation (Muda et al., 1996) – is reduced. Consistent with this, we have 

previously observed phosphorylation/activation of extracellular signal-regulated kinases (ERKs) 

in response to seliciclib in human colon cancer cell lines (Whittaker et al., 2004).  Our 

observation here of increased expression of transcripts regulated by the MAPK pathway was of 

particular interest as this suggested that activation of the pathway has functional consequences. 

We confirmed that treatment of HT29 cells with CCT068127 or seliciclib for 15, 30, 60 and 120 

minutes results in rapid phosphorylation of ERK1/2 and that this is seen in the absence of any 

dramatic changes in the phosphorylation state of the upstream kinases MEK1 and MEK2 



A
cc

ep
te

d
 A

rt
ic

le

Molecular Oncology (2017) © 2017 The Authors. Published by FEBS Press and John Wiley & 

Sons Ltd. 

(Figure 4D). Therefore, we determined the expression at the protein level of the ERK2-

phosphatase DUSP6, which as noted above shows reduced mRNA expression. We found that 

DUSP6 protein levels reduce rapidly, within 1-2 h following treatment with either CCT068127 or 

seliciclib, commensurate with increased ERK1/2 phosphorylation (Figure 4D).  

We also noted that CDK inhibitor treatment alters transcription of the anti-apoptotic gene 

MCL1, which belongs to the BCL2 family. Although we observed an increase in MCL1 mRNA at 

24 h by microarray, RT-qPCR analysis showed an initial decrease at 4 h, followed by a rebound 

to untreated levels or higher by 24 h (Figure 4C). We found that MCL1 protein expression is 

decreased by both CCT068127 and seliciclib within 2 h of treatment (Figure 4D) (Whittaker et 

al., 2007). Interestingly, unlike the mRNA, expression of MCL1 protein does not recover at 24 h 

with either seliciclib or CCT068127 (Figure 4E). Sustained suppression of MCL1 protein 

expression by seliciclib and CCT068127 was confirmed in HT29 and COLO205 cells out to 48 h, 

whereas in RKO cells MCL1 protein was decreased at 4 h but recovered to near-control levels 

at 24 and 48 h (Figure 4F-H). qRT-PCR of all of these cell lines treated as in Figure 4F 

demonstrated that mRNA levels for MCL1 showed modest decreases at 4 h of treatment, 

followed by recovery to control levels or greater at 24 and 48 h. Notably, loss of MCL1 protein 

occurs at the same concentrations at which we also observe PARP cleavage – a marker of 

caspase activation and apoptosis (Figure 4E). Hence, loss of MCL1 protein might present a 

deficit in the balance of anti-apoptotic versus pro-apoptotic signals, resulting in the induction of 

apoptosis. 

3.6 Combined inhibition of CDKs and the BCL2-family is synergistic 

 Our observation that CCT068127 treatment gives rise to enhanced MAPK signaling 

prompted us to hypothesize that activation of the MAPK pathway might provide a survival signal 

to the cells. We therefore treated HT29 human colon cancer cells with a selective inhibitor of 

ERK known as VTX-11e (Aronov et al., 2009) in combination with CCT068127; we then 
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determined the effect on cell proliferation and survival after 4 d and calculated synergy using a 

well-established method (Chou and Talalay, 1984). Under these conditions, the ERK inhibitor 

plus CCT068127 gave combination index (CI) values of >1 and was classified as antagonistic 

(Figure 5A).       

Since we also observed a loss of the anti-apoptotic MCL1 protein in response to CDK 

inhibitor treatment, we posited that this depletion of MCL1 might create a dependency upon 

other anti-apoptotic proteins, such as additional members of the BCL2-family, and that a BCL2 

family inhibitor might be synergistic with CCT068127. Hence, we investigated the response of 

HT29 cells to a 96 h exposure to the combination of CCT068127 and ABT263, an inhibitor of 

BCL2-family proteins (Tse et al., 2008). Excitingly, we observed with a CI value ~0.5 or lower – 

indicating a synergistic antiproliferative effect with the combination of these two agents (Figure 

5B). We confirmed that the combination of these two agents results in an increased 

antiproliferative/cytotoxic effect as measured by colony formation assay in HT29, COLO205 and 

RKO cells (Figure 5C). Colorectal cancer cells were exposed to 1 µM CCT068127, 750 nM 

ABT263 or a combination of both drugs for a period of 5 d. The drugs were then washed out 

and the cells grown in medium only for a further 7 days. We observed that the combination of 

CCT068127 and ABT263 results in a significantly greater suppression of measurable cell colony 

formation than when used as single agents (Supplementary Figure 7). Furthermore, exposure 

of HT29, COLO205 and RKO human colon cancer cells to both compounds in combination for 

48 h results in a greater degree of PARP cleavage, indicative of apoptotic cell death (Figure 

5D). 

4. Discussion 

 We set out to discover a CDK2/9 inhibitor with greater potency and metabolic stability 

compared to the parent compound seliciclib [13]. CCT068127 exhibits 15-fold greater potency 

against CDK1/cyclin B, 14-fold greater potency against CDK5/p35, 22-fold greater potency 
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against CDK2/cyclin E and 11-fold greater potency against CDK9/cyclin T. In contrast, potency 

towards CDK4 and CDK6 increased only by 6 to 8-fold and that for CDK7/cyclin H potency 

remained the same; therefore selectivity for CDK2 and 9 was increased over CDKs 4, 6 and 7. 

Despite increased potency against CDK1, a cell-based assay for PP1 phosphorylation at T320 

demonstrated that CDK1 was not inhibited at concentrations of CCT068127 (or seliciclib) where 

cellular effects on proliferation and signaling occurred. The basis for greater potency against 

CDK2 was suggested by the crystal structure of CCT068127 bound to CDK2, whereby the 

pendant C2 side chain hydroxyl moiety forms an additional hydrogen bond with Asp145 of the 

DFG motif. Improved enzyme potency translated into greater antiproliferative activity against 

human cancer cell lines with an average GI50 24-fold lower than that observed with seliciclib. 

Importantly, there was a clear correlation between the suppression of key pharmacodynamic 

markers for CDK2 and CDK9 (phosphorylation of RB and RNA polymerase II respectively) and 

the inhibition of cell proliferation. Notably, RNA polymerase II was inhibited more rapidly and 

near-completely compared to RB by both seliciclib and CCT068127, suggesting that inhibition of 

CDKs targeting RNA polymerase II may be a primary driver of the cellular response to these 

agents. This is consistent with a recent study in which seliciclib was shown to bind to CDK7, 12, 

9 and 2 in an affinity pull-down assay (Delehouze et al., 2014). The consequence of CDK9 

inhibition appears to be a gradual reduction in the expression of cyclin D1, cyclin T1 and CDK9 

itself presumably via inhibition of transcriptional elongation by RNA polymerase II. Thus, these 

agents may primarily target CDKs that regulate transcription but, through cyclin or CDK 

depletion, result in inhibition of additional cell-cycle CDKs as well. While in vitro biochemical 

data suggest that CCT068127 showed greatest potency for CDK2, CDK5 and CDK9, our 

cellular studies suggest that CDK9 may be a key target of this compound; supported by the key 

observations of the greater magnitude of inhibition of RNA polymerase II phosphorylation over 

RB, that the catalytic subunit of CDK5 was not detectable in the HT29 and RKO cell lines and 



A
cc

ep
te

d
 A

rt
ic

le

Molecular Oncology (2017) © 2017 The Authors. Published by FEBS Press and John Wiley & 

Sons Ltd. 

that siRNA-mediated reduction of CDK5 expression did not have marked effects on HT29 cell 

proliferation. However, we cannot rule out the possibility that inhibition of these, and potentially 

other CDKs, may contribute to the mechanism of action of these compounds or additional 

effects in vivo. 

In terms of cell cycle effects, CCT068127 caused the same arrest of cell cycle 

progression as seen with seliciclib, with a reduction in cells with 2n DNA content and an 

increase in cells with 4n DNA content, but was able to achieve this at a concentration 15-fold 

lower than that required for seliciclib. Overall, CCT068127 retained the same cellular effects as 

the developmental clinical drug seliciclib but with significantly improved potency and, as we 

have reported previously, has improved metabolic stability and displays greater in vivo efficacy 

in a tumor xenograft model (Wilson et al., 2011). 

 We further investigated the mechanism of action of CCT068127 by comparing the 

transcriptional signature induced by the compound in the HT29 human colon cancer cell line to 

the expression signatures available in the Connectivity Map database. The signatures most 

highly correlated to that of CCT068127 are those for other CDK inhibitors and in addition HDAC 

inhibitors. The close correlation between these two compound classes may stem from their 

ability to broadly modulate transcription and that functional RB recruits histone deacetylase to 

suppress E2F-regulated transcription (Brehm et al., 1998), which is enhanced by CDK inhibition. 

More global effects on transcription are also likely to be a result of decreased RNA polymerase 

II activity, through inhibition of CDKs including CDK9. 

It is interesting to note that treatment with CCT068127 induces rapid activation of 

ERK1/2 and we were keen to determine how this was mediated and whether there was an 

associated dependency upon MAPK signaling for survival of the cells. As the phosphorylation 

state and expression of MEK1/2 appeared to be unaltered by CCT068127 treatment, our results 

suggested that upstream activation of the MAPK pathway was likely not mediating this effect. In 
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fact, decreased protein expression of the ERK phosphatase DUSP6 occurs at the same time 

and concentrations of CCT068127 as the observed induction of ERK1/2 phosphorylation. It 

therefore seems likely that loss of DUSP6 expression permits increased ERK1/2 

phosphorylation and activation of the pathway (Muda et al., 1996). Consistent with this, the 

mRNAs for EGR1 and IER2 were induced by both inhibitors, suggesting some capacity of ERK 

to positively modulate transcription. Given the positive regulation of cell proliferation and survival 

mediated by the MAPK pathway, we hypothesized that addition of an ERK inhibitor would block 

any proliferative or survival signaling through MAPK. Surprisingly, this was not the case and 

rather than showing synergy with CCT068127, the ERK inhibitor was antagonistic. ERK 

inhibition reportedly induces a G1 arrest (Morris et al., 2013) and therefore could potentially 

protect cells from CDKi-mediated apoptosis, particularly if driven by deregulation of E2F during 

S-phase (Qin et al., 1994; Wu and Levine, 1994). 

 The mRNA expression profiling data showed an increase in the transcript levels of the 

anti-apoptotic gene MCL1 in the HT29 cell line. Previously we had seen this with seliciclib 

treatment but the expression of MCL1 protein was rapidly decreased in response to CDK 

inhibition (Whittaker et al., 2007) as has been described for several other CDK9 inhibitors 

(Gregory et al., 2015; Lemke et al., 2014; Ma et al., 2003). Further RT-qPCR analysis showed 

that MCL1 mRNA was initially inhibited in all three cancer cell lines at 4 h but was substantially 

increased in HT29 and RKO cells by both seliciclib and CCT068127 at 24-48 h, However, MCL1 

protein levels were decreased by both compounds at 4-48 h in HT29 and COLO205 cells; 

whereas RKO cells showed a decrease at 4 h and recovery at 24-48 h. Given the effect of 

CDK2 and CDK9 inhibition on the cell cycle and global transcriptional regulation, presumably 

sustained MCL1 protein suppression at 24-48 h is due to either inhibition of translation of the 

mRNA or accelerated protein degradation (Choudhary et al., 2015). Notably, the RKO cells 

recover expression of MCL1 protein at 24-48 h so may regulate MCL1 protein expression 
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differently to the HT29 and COLO205 cells. Irrespective of the precise mechanism, the loss of 

MCL1 protein presented a possible therapeutic opportunity to further target the anti-apoptotic 

BCL2 family with a small molecule inhibitor and enhance the pro-apoptotic activity of 

CCT068127. Combined use of CCT068127 and ABT263, a BCL2-family inhibitor, led to 

synergistic antiproliferative activity and consistent with this, we saw elevated caspase activation 

indicative of apoptosis and reduced cell survival in colony formation assays. Excitingly, this 

presents a highly rational and mechanistically defined combinatorial approach to target cancer 

cell survival. Given that MCL1 is amplified in approximately 11% of cancers and over-

expression of the protein is associated with chemo-resistance (Beroukhim et al., 2010), the 

combination of a CDK2/9 inhibitor with a BCL2 family inhibitor presents an attractive therapeutic 

strategy for those cancers that may have an increased dependency on MCL1. To our 

knowledge, this is the first demonstration that combination of a CDK2/9 inhibitor and a BCL2 

family inhibitor is beneficial in human colorectal cancer cell lines and may support widening the 

scope of indications in which these agents are tested. Overall, our data support the continued 

clinical development of this series of CDK2/9 inhibitors, from which CYC065 has now entered 

first-in-human studies (Cyclacel Ltd. press release October 22, 2015). 
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Figure Legends 

 

Figure 1.  Enhanced potency of CCT068127 over seliciclib is achieved by additional 

ligand interactions with CDK2 and CDK9.   

(A) Chemical structures of seliciclib and CCT068127; numbering of the purine scaffold is 

indicated for CCT068127. 
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(B) Secondary structure representation of human CDK2 in complex with CCT068127 

determined by X-ray crystallography at 1.3 Å resolution.  The inset shows the binding 

interactions of CCT068127 within the ATP binding pocket.  The hinge region is indicated in 

orange, Asp145 of the DFG motif in cyan, and CCT068127 in yellow. Displayed in blue is the 

2Fo-Fc electron density, contoured at 1σ around CCT068127. The data and refinement statistics 

are shown in the supplementary material (Supplementary Table 3). The hydrogen bonding and 

van der Waals (hydrophobic) interactions are shown as black and green dotted lines, 

respectively. PDB: 5MHQ. 

(C) Schematic presentation of the binding interactions between CCT068127 and CDK2.  (D) 

Alignment of CCT068127 (yellow) and seliciclib (magenta) (PDB: 3DDQ) bound to CDK2. 

 

Figure 2.  CCT068127 potently inhibits RB and RNA polymerase II phosphorylation in 

human cancer cells.   

(A) HT29 and RKO colon cancer cells were treated with increasing concentrations of 

CCT068127 or seliciclib for 24 h.  Cell lysates were analyzed by Western blotting for the 

phosphorylation of RB (a measure of CDK2 inhibition) and phosphorylation of RNA polymerase 

II (a measure of CDK9 inhibition).   

(B) Quantification of RB S780 and RNAPII S2 phosphorylation in (A), normalized to total RB or 

total RNAPII respectively and expressed as a percentage of the DMSO control (mean percent of 

control values presented from 3 independent repeats ± SE, significant difference from control 

indicated by * p<0.05, ** p<0.01, *** p<0.001, two-tailed T-test). 

(C) HT29 and RKO cells were treated with equiactive (3xGI50, SRB assay) concentrations of 

CCT068127 (2.55 µM for HT29 and 1.98 µM for RKO) or seliciclib (45 µM for HT29 and 30 µM 

for RKO) for the indicated times.  A: asynchronously growing, untreated cells, D24: cells treated 

with DMSO for 24 h. Cell lysates were analyzed by Western blotting for the indicated proteins. 
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(D) Quantification of RB S780 and RNAPII S2 phosphorylation in (C), normalized to total RB or 

total RNAPII respectively and expressed as a percentage of the time 0 control (mean percent of 

control values presented from 3 independent repeats ± SE, significant difference from control 

indicated by * p<0.05, ** p<0.01, *** p<0.001, two-tailed T-test). 

 

Figure 3.  Induction of cell cycle arrest by CCT068127 and seliciclib.   

(A) HT29 human colon cancer cells were incubated with equiactive (3xGI50, SRB assay) 

concentrations of CCT068127 or seliciclib for 4-24 h. Cell cycle distribution was assessed by 

propidium iodide staining and analysis by flow cytometry. 

(B) Quantification of cell cycle distribution profiles from (A). Data presented is the mean of 3 

independent experiments ± SE. 

(C) HT29 cells were treated as in (A) and were pulse-labeled with BrdU, then fixed and stained 

with propidium iodide.  BrdU incorporation was determined using a FITC-conjugated antibody to 

BrdU and detected by flow cytometry. The percentage of BrdU positive cells is indicated. 

(D) HT29 cells were treated as in (A) and cell lysates were analysed by Western blotting for the 

indicated proteins. The arrow indicates hypophosphorylated RB. 

 

Figure 4.  Gene expression analysis of colon cancer cells following treatment with 

CCT068127 and seliciclib.   

(A) HT29 cells were treated with equiactive concentrations (3xGI50, SRB assay) of seliciclib (45 

µM) and CCT068127 (2.55 µM) or 45 µM CCT068152. mRNA expression profiles were 

generated using a custom microarray enriched for 5808 cDNAs implicated in cancer. Genes that 

were differentially expressed between the CDK inhibitor- and the DMSO-treated cells were 

determined using comparative marker selection (T-test) and a ≥ 2-fold change in expression as 
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a filter. The mRNA expression changes for seliciclib and CCT068127 were plotted against each 

other. 

(B) Venn diagram was constructed to show the number of genes in common between the two 

CDK inhibitors, and the inactive analog CCT068152, which displayed either increased or 

decreased expression following treatment. 

(C) mRNA expression changes following treatment of HT29, COLO205 or RKO human colon 

cancer cells with 3xGI50 concentrations of CCT068127 or seliciclib for 4 and 24 h as determined 

by RT-qPCR.  

(D) HT29 cells were treated with 5xGI50 concentrations of CCT068127 (4.25 µM) or seliciclib (75 

µM) for 15, 30, 60 or 120 minutes and cell lysates analyzed for the indicated proteins by 

Western blotting.  

(E) HT29 cells were treated with a range of concentrations of CCT068127 or seliciclib for 24 h. 

Cells were lysed and extracts were analyzed by Western blotting for the proteins listed. 

(F) HT29, COLO205 and RKO cells were treated with either DMSO or 3xGI50 concentrations of 

CCT068127 or seliciclib for 4, 24 and 48 h and protein lysates analysed by Western blotting for 

the indicated proteins. Data are representative of 3 independent repeats. 

(G) The expression of MCL1 in (F) was quantified and normalized to vinculin expression. Data 

are the mean of 3 independent repeats ± SE.  

(H) Cells were treated as in (F) and the expression of MCL1 mRNA was quantified by qRT-PCR, 

normalized to the housekeeping gene GUSB. The mean of triplicate measurements is 

presented ± SE. 
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Figure 5. Targeting CDK2/9 and BCL2-family members synergistically inhibits 

proliferation and induces apoptosis. 

(A) HT29 human colon cancer cells were treated with increasing concentrations of CCT068127 

in combination with a small molecule inhibitor of ERK, VTX-11e. Cells were treated with both 

compounds in a 1.5-fold dilution series starting at 5X the GI50 (4.25 µM CCT068127 and 243 nM 

VTX-11e) in a 1:1 ratio. Cell proliferation/survival was assessed by SRB assay and synergy was 

calculated using the combination index (CI) methodology (Chou and Talalay, 1984). Data from 4 

independent repeats were analysed by CalcuSyn software and the mean CI ± SE is plotted 

relative to the fraction of cells affected by the treatment. Values < 1 are indicative of synergy.  

(B) HT29 cells were treated as in (A) except the ERK inhibitor was replaced by the BCL2-family 

inhibitor ABT263. Cells were treated with both compounds in a 1.5-fold dilution series starting at 

5X the GI50 (4.25 µM CCT068127 and 12.7 µM ABT263) in a 1:1 ratio. The mean combination 

index ± SE is plotted relative to the fraction of cells affected by the treatment. Values < 1 are 

indicative of synergy. 

(C) HT29, COLO205 and RKO human colon cancer cells were treated with 1 µM CCT068127 or 

750 nM ABT263 alone, or in combination for 5 d after which the medium was replaced and cells 

were cultured in medium alone for a further 7 d. Cells were then fixed and stained with crystal 

violet. Data shown are representative of 3 independent experiments. 

(D) HT29, COLO205 and RKO cells were treated with 1 µM CCT068127 in the presence of 

absence of 750 nM ABT263 for 48 h. Cell lysates were analyzed by Western blotting for the 

indicated proteins. 
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Supplementary Figure Legends 

 

Supplementary Figure 1. Inhibition of CDK1 activity in HT29 colon cancer cells treated 

with CDK inhibitors. Cells were incubated overnight with 0.1 µg/ml nocodazole (Noc) to induce 

a G2/M phase arrest where CDK1/cyclin B activity peaks. The cells were then treated with 1 µM 

MG132 and seliciclib (A) or CCT068127 (B) at the indicated doses for 2 h. Cell lysates were 

analysed by Western blotting for the indicated proteins. (C) Quantification of phospho-PP1a 

T320 normalised to total PP1a relative to cells treated with nocodazole and MG132. Data are 

the mean ± SEM for 3 independent experiments. (D) Quantification of cyclin B1 normalised to 

vinculin relative to cells treated with nocodazole and MG132. Data are the mean ± SE for 3 

independent experiments.  

 

Supplementary Figure 2. CCT068127 is a potent inhibitor of RNA polymerase II 

phosphorylation in COLO205 cells. (A) COLO205 colon cancer cells were treated with 

increasing concentrations of CCT068127 or seliciclib for 24 h.  Cell lysates were analyzed by 

Western blotting for the phosphorylation of RB (a measure of CDK2 inhibition) and 

phosphorylation of RNA polymerase II (a measure of CDK9 inhibition). Note altered sample 

order of CCT068127 gel, due to misloading. (B) Quantification of RB S780 and RNAPII S2 

phosphorylation in (A), normalized to total RB or total RNAPII respectively and expressed as a 

percentage of the DMSO control (mean percent of control values presented from 3 independent 

repeats ± SE, significant difference from control indicated by * p<0.05, ** p<0.01, *** p<0.001, 

two-tailed T-test). (C) COLO205 cells were treated with equiactive (3xGI50, SRB assay) 

concentrations of CCT068127 (1.5 µM) or seliciclib (33 µM) for the indicated times.  A: 

asynchronously growing, untreated cells, D24: cells treated with DMSO for 24 h. Cell lysates 

were analyzed by Western blotting for the indicated proteins. (D) Quantification of RB S780 and 
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RNAPII S2 phosphorylation in (C), normalized to total RB or total RNAPII respectively and 

expressed as a percentage of the time 0 control (mean percent of control values presented from 

3 independent repeats ± SE, significant difference from control indicated by * p<0.05, ** p<0.01, 

*** p<0.001, two-tailed T-test). 

 

Supplementary Figure 3. CCT068127 treatment decreases the expression of cyclin T1, 

CDK9 and cyclin D1. (A) HT29 and RKO colon cancer cells were treated with increasing 

concentrations of CCT068127 or seliciclib for 24 h.  Cell lysates were analyzed by Western 

blotting for the indicated proteins. (B) HT29 and RKO cells were treated with equiactive (3xGI50, 

SRB assay) concentrations of CCT068127 (2.55 µM for HT29 and 1.98 µM for RKO) or seliciclib 

(45 µM for HT29 and 30 µM for RKO) for the indicated times.  A: asynchronously growing, 

untreated cells, D24: cells treated with DMSO for 24 h. Cell lysates were analyzed by Western 

blotting for the indicated proteins. 

 

Supplementary Figure 4. CDK5 is not required for cell proliferation. (A) HT29 colon cancer 

cells were reverse-transfected with 25 nM of siRNAs targeting CDK5 or a non-targeting control.  

After 4 days, cell lysates were analyzed by Western blotting for the indicated proteins. CDK5 

expression was quantified and normalised to vinculin expression and expressed as a 

percentage of the control (siCTRL). Data are the mean of 3 independent experiments ± SE. (B) 

HT29 cells were treated as in (A) and cell proliferation assessed by cell-titre blue assay. Data 

are the mean of 3 triplicate measurements ± SE and are representative of 3 independent 

repeats.  
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Supplementary Figure 5. CCT068152 is an inactive analogue of CCT068127. (A) Chemical 

structure of CCT068152. (B) Biochemical kinase inhibition data for CCT068152. (C) 

Proliferation of HT29 cells treated with a titration of seliciclib, CCT068127 or CCT068152 for 96 

h and quantified by SRB assay. (D) HT29 cells were treated with CCT068152 or DMSO as 

shown for 24 h. Cell lysates were analysed by Western blotting for the indicated proteins. 

 

Supplementary Figure 6. Gene expression profiling of seliciclib and CCT068127 identifies 

a cluster of genes involved in G2/M cell cycle control. A protein interaction network was 

generated from the significantly altered genes following CCT068127 and seliciclib treatment 

using STRING (Franceschini et al., 2013). 

 

Supplementary Figure 7. HT29, COLO205 and RKO human colon cancer cells were treated 

with 1 µM CCT068127 or 750 nM ABT263 alone, or in combination for 5 d after which the 

medium was replaced and cells were cultured in medium alone for a further 7 d. Cells were then 

fixed and stained with crystal violet, the dye was solubilized in 10% acetic acid and absorbance 

read at 595 nm. Data are the mean of 3 independent experiments ± SE. Statistical differences 

were determined by a two-tailed t-test. 
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Tables 

Table 1. In vitro kinase inhibition by CCT068127 and seliciclib.  Compounds were tested 

against human recombinant enzymes in vitro as previously described (McIntyre et al., 2010; 

Wang et al., 2004; Wilson et al., 2011) except for CDK5/p35, which was carried out using the 

Invitrogen Select Screen service.  Results are the mean of 3 independent repeats ± SE except 

for CDK5/p35, which is the mean of two determinations. The following kinases had IC50 values 

greater than 10 µmol/L for both compounds: ABL, AKT, CAMKII, CK2, ERK2, GSK3, PKA, PKC, 

PLK1, S6, SAP2KA, AURKA, FLT3, SRC, LCK, PDGFB, AURKB, VEGFR1, VEGFR2 AND 

IKKA.  Data for seliciclib were reported previously (Mariaule and Belmont, 2014; Wilson et al., 

2011). 

 

Kinase Assay 

CCT068127 

Mean IC50 (µmol/L) ± 

SE 

Seliciclib 

IC50 (µmol/L) 

CDK1/B 1.1 ± 0.29 17 

CDK2/A 0.11 ± 0.02 ND 

CDK2/E 0.010 ± 0.001 0.22 

CDK4/D1 4.8 ± 0.6 27 

CDK5/p35 0.07 1.0 

CDK6/D3 6.2 ± 0.6 ND 

CDK7/H 0.52 ± 0.09 0.52 

CDK9/T 0.09 ± 0.03 0.80 
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Table 2. Antiproliferative activity of CCT068127 and seliciclib in human colon cancer and 

melanoma cell lines.  GI50 values for cell proliferation were determined in human colon cancer 

and melanoma cell lines following exposure for 4 population doublings using SRB analysis as 

the endpoint (Whittaker et al., 2004). Values reported are the mean of 3 independent repeats ± 

SE. ND: not determined. 

 

Cell Line Tissue CCT068127 

GI50 (µmol/L) ± SE 

Seliciclib 

GI50 (µmol/L) ± SE 

HT29 Colorectal adenocarcinoma 0.85 ± 0.03 15 ± 3.4 

HCT116 Colon carcinoma 0.25 ± 0.03 6.4 ± 1.8 

COLO205 Colon adenocarcinoma 0.50 ± 0.09 11 ± 1.2 

RKO Colon carcinoma 0.66 ± 0.03 10 ± 0.26 

SKMEL28 Malignant melanoma 0.31 ± 0.07 8.5 ± 2.1 

WM266.4 Malignant melanoma 0.40 ± 0.06 18 ± 2.4 

Average - 0.5 12 
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