24 research outputs found

    Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics

    Get PDF
    Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections

    EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans

    No full text
    Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 and mitogen-activated protein kinase signalling in an inoculum-dependent manner, and is required for induction of a proinflammatory and antifungal response. EphA2 -/- mice have impaired inflammatory responses and reduced interleukin-17 signalling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as a PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans

    Palladium-Catalysed Carbo- and Hydroamination of Allenyl Ethers and Aminoallenes: Available Entry to Nitrogen-Containing Benzo-Fused Rings

    No full text
    The Pd-catalysed reactions of allenyl ethers and allenylamines derived from commercially available o-aminophenols and o-nitroaniline have been studied. Using a wide variety of aryl- and heteroaryl halides, carboamination of the allenes led to sequential C\u2013C and C\u2013N bond formation. Both carbo- and hydroamination processes resulted in the formation of nitrogen-containing benzo-fused rings. In the case of aminoallenes arising from o-phenylenediamine, the regioselectivity of the cyclization step was strongly dependent on the protecting group tethered to the nitrogen atoms, allowing the formation of five- and seven-membered rings
    corecore