24 research outputs found

    Familial deletion 18p syndrome: case report

    Get PDF
    BACKGROUND: Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. CASE PRESENTATION: The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18)(p11.2). Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p) are fertile and seem to have a normal miscarriage rate. CONCLUSION: Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported

    First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement

    Full text link
    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.Financial support was provided by the Spanish Project INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Almentaria) RTA2011-00044C02-01, the ANR MELODY (ANR-11-BSV7-0024), the European Research Council (ERCSEXYPARTH), FEDER, and FSE funds. NVD has been awarded a grant by the Andalusian Institute of Agronomy Research IFAPA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Vicente-Dolera, N.; Troadec, C.; Moya, M.; Río-Celestino, MD.; Pomares-Viciana, T.; Bendahmane, A.; Picó Sirvent, MB.... (2014). First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement. PLoS ONE. 9(11):112743-112743. https://doi.org/10.1371/journal.pone.0112743S112743112743911Paris, H. S., Yonash, N., Portnoy, V., Mozes-Daube, N., Tzuri, G., & Katzir, N. (2002). Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics, 106(6), 971-978. doi:10.1007/s00122-002-1157-0Parry, M. A. J., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., … Phillips, A. L. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817-2825. doi:10.1093/jxb/erp189Gilchrist, E., & Haughn, G. (2010). Reverse genetics techniques: engineering loss and gain of gene function in plants. Briefings in Functional Genomics, 9(2), 103-110. doi:10.1093/bfgp/elp059McCallum, C. M., Comai, L., Greene, E. A., & Henikoff, S. (2000). Targeting Induced LocalLesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiology, 123(2), 439-442. doi:10.1104/pp.123.2.439Colbert, T., Till, B. J., Tompa, R., Reynolds, S., Steine, M. N., Yeung, A. T., … Henikoff, S. (2001). High-Throughput Screening for Induced Point Mutations. Plant Physiology, 126(2), 480-484. doi:10.1104/pp.126.2.480Wang, T. L., Uauy, C., Robson, F., & Till, B. (2012). TILLINGin extremis. Plant Biotechnology Journal, 10(7), 761-772. doi:10.1111/j.1467-7652.2012.00708.xDong, C., Dalton-Morgan, J., Vincent, K., & Sharp, P. (2009). A Modified TILLING Method for Wheat Breeding. The Plant Genome Journal, 2(1), 39. doi:10.3835/plantgenome2008.10.0012Uauy, C., Paraiso, F., Colasuonno, P., Tran, R. K., Tsai, H., Berardi, S., … Dubcovsky, J. (2009). A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biology, 9(1), 115. doi:10.1186/1471-2229-9-115Kumar, A. P., Boualem, A., Bhattacharya, A., Parikh, S., Desai, N., Zambelli, A., … Bendahmane, A. (2013). SMART -- Sunflower Mutant population And Reverse genetic Tool for crop improvement. BMC Plant Biology, 13(1), 38. doi:10.1186/1471-2229-13-38Kurowska, M., Daszkowska-Golec, A., Gruszka, D., Marzec, M., Szurman, M., Szarejko, I., & Maluszynski, M. (2011). TILLING - a shortcut in functional genomics. Journal of Applied Genetics, 52(4), 371-390. doi:10.1007/s13353-011-0061-1Rigola, D., van Oeveren, J., Janssen, A., Bonné, A., Schneiders, H., van der Poel, H. J. A., … van Eijk, M. J. T. (2009). High-Throughput Detection of Induced Mutations and Natural Variation Using KeyPoint™ Technology. PLoS ONE, 4(3), e4761. doi:10.1371/journal.pone.0004761González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289Elias, R., Till, B. J., Mba, C., & Al-Safadi, B. (2009). Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Research Notes, 2(1), 141. doi:10.1186/1756-0500-2-141Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776Boualem, A., Fleurier, S., Troadec, C., Audigier, P., Kumar, A. P. K., Chatterjee, M., … Bendahmane, A. (2014). Development of a Cucumis sativus TILLinG Platform for Forward and Reverse Genetics. PLoS ONE, 9(5), e97963. doi:10.1371/journal.pone.0097963Blanca, J., Cañizares, J., Roig, C., Ziarsolo, P., Nuez, F., & Picó, B. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12(1). doi:10.1186/1471-2164-12-104Esteras, C., Gomez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., … Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80. doi:10.1186/1471-2164-13-80Vicente-Dólera, N., Pinillos, V., Moya, M., Del Río-Celestino, M., Pomares-Viciana, T., Román, B., & Gómez, P. (2014). An improved method to obtain novel mutants in Cucurbita pepo by pollen viability. Scientia Horticulturae, 169, 14-19. doi:10.1016/j.scienta.2014.01.045Martín, B., Ramiro, M., Martínez-Zapater, J. M., & Alonso-Blanco, C. (2009). A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biology, 9(1), 147. doi:10.1186/1471-2229-9-147Wienholds, E. (2003). Efficient Target-Selected Mutagenesis in Zebrafish. Genome Research, 13(12), 2700-2707. doi:10.1101/gr.1725103Dalmais, M., Schmidt, J., Le Signor, C., Moussy, F., Burstin, J., Savois, V., … Bendahmane, A. (2008). UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology, 9(2), R43. doi:10.1186/gb-2008-9-2-r43Triques, K., Sturbois, B., Gallais, S., Dalmais, M., Chauvin, S., Clepet, C., … Bendahmane, A. (2007). Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. The Plant Journal, 51(6), 1116-1125. doi:10.1111/j.1365-313x.2007.03201.xTaylor, N. E. (2003). PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Research, 31(13), 3808-3811. doi:10.1093/nar/gkg574Ng, P. C. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812-3814. doi:10.1093/nar/gkg509Obrero, Á., González-Verdejo, C. I., Die, J. V., Gómez, P., Del Río-Celestino, M., & Román, B. (2013). Carotenogenic Gene Expression and Carotenoid Accumulation in Three Varieties of Cucurbita pepo during Fruit Development. Journal of Agricultural and Food Chemistry, 61(26), 6393-6403. doi:10.1021/jf4004576Cosio, C., Vuillemin, L., De Meyer, M., Kevers, C., Penel, C., & Dunand, C. (2009). An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 229(4), 823-836. doi:10.1007/s00425-008-0876-0Sisko, M. (2003). Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Science, 165(3), 663-669. doi:10.1016/s0168-9452(03)00256-5Campa A (1991) Biological roles of plant peroxidases: known and potential function. In Peroxidases in Chemistry and Biology Vol. II. (Everse, J., Everse, K.E. & Grisham, M.B., eds), pp. 25–50, CRC Press, Boca Raton, FL.Schuller, D. J., Ban, N., van Huystee, R. B., McPherson, A., & Poulos, T. L. (1996). The crystal structure of peanut peroxidase. Structure, 4(3), 311-321. doi:10.1016/s0969-2126(96)00035-4Stephenson, P., Baker, D., Girin, T., Perez, A., Amoah, S., King, G. J., & Østergaard, L. (2010). A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biology, 10(1), 62. doi:10.1186/1471-2229-10-62Suzuki, T., Eiguchi, M., Kumamaru, T., Satoh, H., Matsusaka, H., Moriguchi, K., … Kurata, N. (2007). MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Molecular Genetics and Genomics, 279(3), 213-223. doi:10.1007/s00438-007-0293-2Chantreau, M., Grec, S., Gutierrez, L., Dalmais, M., Pineau, C., Demailly, H., … Hawkins, S. (2013). PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biology, 13(1), 159. doi:10.1186/1471-2229-13-159Rawat, N., Sehgal, S. K., Joshi, A., Rothe, N., Wilson, D. L., McGraw, N., … Gill, B. S. (2012). A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biology, 12(1), 205. doi:10.1186/1471-2229-12-205Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69Markiewicz, P., Kleina, L. G., Cruz, C., Ehret, S., & Miller, J. H. (1994). Genetic Studies of the lac Repressor. XIV. Analysis of 4000 Altered Escherichia coli lac Repressors Reveals Essential and Non-essential Residues, as well as «Spacers» which do not Require a Specific Sequence. Journal of Molecular Biology, 240(5), 421-433. doi:10.1006/jmbi.1994.1458Carpin, S., Crèvecoeur, M., Greppin, H., & Penel, C. (1999). Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini. Plant Physiology, 120(3), 799-810. doi:10.1104/pp.120.3.799Welinder, K. G., Justesen, A. F., Kjaersgård, I. V. H., Jensen, R. B., Rasmussen, S. K., Jespersen, H. M., & Duroux, L. (2002). Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. European Journal of Biochemistry, 269(24), 6063-6081. doi:10.1046/j.1432-1033.2002.03311.

    A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer

    Full text link
    Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state-of-the-art quantitative 2D liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size-exclusion chromatography/inductively coupled plasma mass spectrometer (SEC-ICP-MS) method, in order to identify the Zn-binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S-transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn-nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn-nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type-specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles
    corecore