47 research outputs found

    Patterns and drivers of tree Mortality in Iberian Forests: climatic effects are modified by competition

    Get PDF
    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information fromc.400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions

    Modeling Species Distributions from Heterogeneous Data for the Biogeographic Regionalization of the European Bryophyte Flora

    Get PDF
    The definition of biogeographic regions provides a fundamental framework for a range of basic and applied questions in biogeography, evolutionary biology, systematics and conservation. Previous research suggested that environmental forcing results in highly congruent regionalization patterns across taxa, but that the size and number of regions depends on the dispersal ability of the taxa considered. We produced a biogeographic regionalization of European bryophytes and hypothesized that (1) regions defined for bryophytes would differ from those defined for other taxa due to the highly specific eco-physiology of the group and (2) their high dispersal ability would result in the resolution of few, large regions. Species distributions were recorded using 10,000 km2 MGRS pixels. Because of the lack of data across large portions of the area, species distribution models employing macroclimatic variables as predictors were used to determine the potential composition of empty pixels. K-means clustering analyses of the pixels based on their potential species composition were employed to define biogeographic regions. The optimal number of regions was determined by v-fold cross-validation and Moran's I statistic. The spatial congruence of the regions identified from their potential bryophyte assemblages with large-scale vegetation patterns is at odds with our primary hypothesis. This reinforces the notion that post-glacial migration patterns might have been much more similar in bryophytes and vascular plants than previously thought. The substantially lower optimal number of clusters and the absence of nested patterns within the main biogeographic regions, as compared to identical analyses in vascular plants, support our second hypothesis. The modelling approach implemented here is, however, based on many assumptions that are discussed but can only be tested when additional data on species distributions become available, highlighting the substantial importance of developing integrated mapping projects for all taxa in key biogeographically areas of Europe, and the Mediterranean peninsulas in particular. © 2013 Mateo et al
    corecore