3,872 research outputs found

    The Halo Occupation Distribution of Active Galactic Nuclei

    Full text link
    Using a fully cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation, we examine the effects of environmental factors (e.g., local gas density, black hole feedback) on the halo occupation distribution of low luminosity active galactic nuclei (AGN). We decompose the mean occupation function into central and satellite contribution and compute the conditional luminosity functions (CLF). The CLF of the central AGN follows a log-normal distribution with the mean increasing and scatter decreasing with increasing redshifts. We analyze the light curves of individual AGN and show that the peak luminosity of the AGN has a tighter correlation with halo mass compared to instantaneous luminosity. We also compute the CLF of satellite AGN at a given central AGN luminosity. We do not see any significant correlation between the number of satellites with the luminosity of the central AGN at a fixed halo mass. We also show that for a sample of AGN with luminosity above 10^42 ergs/s the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The radial distribution of AGN inside halos follows a power law at all redshifts with a mean index of -2.33 +/- 0.08. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides a theoretical tool for interpreting current and future measurements of AGN clustering.Comment: 14 pages, 11 figures, 2 Tables (Matches the MNRAS accepted version

    Multi-scale initial conditions for cosmological simulations

    Full text link
    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological "zoom-in" simulations. The method uses an adaptive convolution of Gaussian white noise with a real space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first (1LPT) or second order Lagrangian perturbation theory (2LPT). The new algorithm achieves RMS relative errors of order 10^(-4) for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real space based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh based codes that is consistent with Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.Comment: 22 pages, 24 figures. MNRAS in press. Updated affiliation

    The Star Formation History and Dust Content in the Far Outer Disc of M31

    Full text link
    We present a detailed analysis of two fields located 26 kpc (~5 scalelengths) from the centre of M31. One field samples the major axis populations--the Outer Disc field--while the other is offset by ~18' and samples the Warp in the stellar disc. The CMDs based on HST/ACS imaging reach old main-sequence turn-offs (~12.5 Gyr). We apply the CMD-fitting technique to the Warp field to reconstruct the star formation history (SFH). We find that after undergoing roughly constant SF until about 4.5 Gyr ago, there was a rapid decline in activity and then a ~1.5 Gyr lull, followed by a strong burst lasting 1.5 Gyr and responsible for 25% of the total stellar mass in this field. This burst appears to be accompanied by a decline in metallicity which could be a signature of the inflow of metal-poor gas. The onset of the burst (~3 Gyr ago) corresponds to the last close passage of M31 and M33 as predicted by detailed N-body modelling, and may have been triggered by this event. We reprocess the deep M33 outer disc field data of Barker et al. (2011) in order to compare consistently-derived SFHs. This reveals a similar duration burst that is exactly coeval with that seen in the M31 Warp field, lending further support to the interaction hypothesis. The complex SFHs and the smoothly-varying age-metallicity relations suggest that the stellar populations observed in the far outer discs of both galaxies have largely formed in situ rather than migrated from smaller galactocentric radii. The strong differential reddening affecting the CMD of the Outer Disc field prevents derivation of the SFH. Instead, we quantify this reddening and find that the fine-scale distribution of dust precisely follows that of the HI gas. This indicates that the outer HI disc of M31 contains a substantial amount of dust and therefore suggests significant metal enrichment in these parts, consistent with inferences from our CMD analysis.Comment: Abstract shortened. 17 pages, 12 figures (+ 6 pages & 5 figures in Appendix). MNRAS, in pres

    Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation?: a meta-analysis.

    Get PDF
    Context: Transcatheter ablation of atrial fibrillation (AF) has undergone important development, with acceptable midterm results in terms of the safety and recurrence. A meta-analysis was performed to identify the periprocedural complications, midterm success rates and predictors of recurrence after AF ablation. Methods and results: 4357 patients with paroxysmal AF, 1083 with persistent AF and 1777 with long standing AF were included. The pooled analysis showed that there was an in-hospital complication rate of tamponade requiring drainage of 0.99% (0.44-1.54; CI 99%), stroke with neurological persistent impairment of 0.22% (0.04-0.47; CI 99%), and stroke without of 0.36% (0.03-0.70; CI 99%) After a follow up of 22 (13-28) months and 1.23 (1.19-1.5; CI 99%) procedures per patient, the AF recurrence rate was 31.20% (24.87-34.81; CI 99%). The persistent AF patients exhibited a greater risk of recurrence after the first ablation (OR 1.78 [1.14, 2.77] CI 99%), but a trend towards non significance was present in the patients with more than one procedure (OR 1.69 [0.95, 3.00] CI 99%). The most powerful predictors of an AF ablation failure in the overall population were a recurrence within 30-days (OR 4.30; 2.00-10.80), valvular AF (OR 5.20; 2.22-9.50) and a left atrium diameter of more than 50 mm (OR 5.10 2.00-12.90; all CI 95%). Conclusions: Persistent AF remains burdened from higher recurrence rates, however not so following redo-procedures. Three predictors, valvular AF, a left atrium diameter longer than 50 mm and recurrence within 30 days, could be appraised to drive selection of patients and therapeutic strategy. (C) 2012 Elsevier Ireland Ltd. All rights reserved

    Self-Regulated Black Hole Growth via Momentum Deposition in Galaxy Merger Simulations

    Full text link
    We perform hydrodynamical simulations of major galaxy mergers using new methods for calculating the growth of massive black holes (BH) in galactic nuclei and their impact on the surrounding galaxy. We model BH growth by including a subgrid model for accretion produced by angular momentum transport on unresolved scales. The impact of the BHs radiation on surrounding gas is approximated by depositing momentum into the ambient gas, which produces an outward force away from the BH. We argue that these phenomenological models for BH growth and feedback better approximate the interaction between the BH and dense gas in galaxies than previous models. We show that this physics leads to self-regulated black hole growth: during the peak of activity, the accretion rate onto the BH is largely determined by the physics of BH feedback, not the subgrid accretion model. The BH significantly modifies the gas dynamics in the galactic nucleus (< 300 pc), but does not generate large-scale galactic outflows. Integrated over an entire galaxy merger, BH feedback has little effect on the total number of stars formed, but is crucial for setting the BHs mass.Comment: 5 pages, 3 figures; final version accepted by MNRAS Letters; conclusions unchange

    Nicotinic receptors

    Get PDF
    Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.peer-reviewe
    • …
    corecore