49 research outputs found

    Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis

    Full text link
    [EN] Nitric oxide (NO) regulates plant growth and development as well as responses to stress that enhanced its endogenous production. Arabidopsis plants exposed to a pulse of exogenous NO gas were used for untargeted global metabolomic analyses thus allowing the identification of metabolic processes affected by NO. At early time points after treatment, NO scavenged superoxide anion and induced the nitration and the S-nitrosylation of proteins. These events preceded an extensive though transient metabolic reprogramming at 6 h after NO treatment, which included enhanced levels of polyamines, lipid catabolism and accumulation of phospholipids, chlorophyll breakdown, protein and nucleic acid turnover and increased content of sugars. Accordingly, lipid-related structures such as root cell membranes and leaf cuticle altered their permeability upon NO treatment. Besides, NO-treated plants displayed degradation of starch granules, which is consistent with the increased sugar content observed in the metabolomic survey. The metabolic profile was restored to baseline levels at 24 h post-treatment, thus pointing up the plasticity of plant metabolism in response to nitroxidative stress conditions.This work was supported by grants BIO2011-27526 and BIO2014-56067-P from the Spanish Ministry of Economy and Competitiveness and FEDER funds. We thank support and comments from Danny Alexander (Metabolon Inc., USA) on metabolomic analyses.Leon Ramos, J.; Costa-Broseta, Á.; Castillo López Del Toro, MC. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports. 6:1-14. doi:10.1038/srep37945S1146Arc, E., Galland, M., Godin, B., Cueff, G. & Rajjou, L. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 4, 346 (2013).Beligni, M. V. & Lamattina, L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215–221 (2000).Lozano-Juste, J. & León, J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol. 156, 1410–1123 (2011).He, Y. et al. Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968–1971 (2004).Tsai, Y. C., Delk, N. A., Chowdhury, N. I. & Braam, J. Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering. Plant Signal. Behav. 2, 446–454 (2007).Manjunatha, G., Lokesh, V. & Neelwarne, B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol. Adv. 28, 489–499 (2010).Liu, F. & Guo, F. Q. Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8(2), e56345 (2013).Du, J. et al. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J. Exp. Bot. 65, 4051–4063 (2014).Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455 (2011).Arasimowicz-Jelonek, M. & Floryszak-Wieczorek, J. Nitric oxide: an effective weapon of the plant or the pathogen? Mol. Plant Pathol. 15, 406–416 (2014).Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 5, 225–33 (2015).Groβ, F., Durner, J. & Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419 (2013).Astier, J. & Lindermayr, C. Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13, 15193–15208 (2012).Hess, D. T. & Stamler, J. S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411–4418 (2012).Guerra, D. D. & Callis, J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56–64 (2012).Skalska, K., Miller, J. S. & Ledakowicz, S. Trends in NO(x) abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010).Pilegaard, K. Processes regulating nitric oxide emissions from soils. Phil. Transac. Royal Soc. London. Ser. B, Biol. Sci. 368, 20130126 (2013).Jaegle, L., Steinberger, L., Martin, R. V. & Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discus. 130, 407–423 (2005).Gupta, K. J., Fernie, A. R., Kaiser, W. M. & van Dongen, J. T. On the origins of nitric oxide. Trends Plant Sci. 16, 160–168 (2011).Mur, L. A. et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5, pls052 (2013).Correa-Aragunde, N., Foresi, N. & Lamattina, L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921 (2015).Noctor, G., Lelarge-Trouverie, C. & Mhamdi, A. The metabolomics of oxidative stress. Phytochemistry 112, 33–53 (2015).Allan, W. L., Simpson, J. P., Clark, S. M. & Shelp, B. J. Gamma-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J. Exp. Bot. 59, 2555–2564 (2008).Romero, L. C., Aroca, M. Á., Laureano-Marín, A. M., Moreno, I., García, I. & Gotor, C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol. Plant 7, 264–276 (2014).Noctor, G. et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484 (2012).Feussner, I. & Wasternack, C. The lipoxygenase pathway. Ann. Rev. Plant Biol. 53, 275–297 (2002).Green, M. A. & Fry, S. C. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433, 83–87 (2005).Szarka, A., Tomasskovics, B. & Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483 (2012).Hurlock, A. K., Roston, R. L., Wang, K. & Benning, C. Lipid trafficking in plant cells. Traffic 15, 915–932 (2014).Blokhina, O., Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194 (2003).Yeats, T. H. & Rose, J. K. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013).Lozano-Juste, J. & León, J. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152, 891–903 (2010).Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol. 82, 505–17 (2013).Pruzinská, A. et al. Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139, 52–63 (2005).Hirashima, M., Tanaka, R. & Tanaka, A. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719–29 (2009).Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F. & Lo Schiavo, F. Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot. 58, 1397–1405 (2007).Mainz, E. R. et al. Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection. Analytical Methods 4, 414–420 (2012).Vandelle, E. & Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 181, 534–539 (2011).Minocha, R., Majumdar, R. & Minocha, S. C. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5, 175 (2014).Parsons H. T., Yasmin, T. & Fry, S. C. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem. J. 440, 375–383 (2011).Hou, Q., Ufer, G. & Bartels, D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–4108 (2016).Zhou, X. R., Callahan, D. L., Shrestha, P., Liu, Q., Petrie, J. R. & Singh, S. P. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Front. Plant Sci. 5, 41 (2014).Pohl, C. H. & Kock, J. L. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 19, 1273–1285 (2014).Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J. & Fernie, A. R. Protein degradation-an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489–498 (2011).Sakamoto, W. & Takami, T. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65, 3835–3843 (2014).Del Duca, S., Serafini-Fracassini, D. & Cai, G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci. 5, 120 (2014).Franco, M. C. & Estévez, A. G. Tyrosine nitration as mediator of cell death. Cell. Mol. Life Sci. 71, 3939–3950 (2014).Palumbo, A., Fiore, G., Di Cristo, C., Di Cosmo, A. & d’Ischia, M. NMDA receptor stimulation induces temporary alpha-tubulin degradation signalled by nitric oxide-mediated tyrosine nitration in the nervous system of Sepia officinalis. Biochem. Biophys. Res. Commun. 293, 1536–1543 (2002).Wang, Y. Y., Lin, S. Y., Chuang, Y. H., Mao, C. H., Tung, K. C. & Sheu, W. H. Protein nitration is associated with increased proteolysis in skeletal muscle of bile duct ligation-induced cirrhotic rats. Metabolism 59, 468–472 (2010).Castillo, M. C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L. & León, J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci. Signal. 8(392), ra89 (2015).Blaise, G. A., Gauvin, D., Gangal, M. & Authier, S. Nitric oxide, cell signaling and cell death. Toxicology 208, 177–192 (2005).Brüne, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869 (2003).Wang, Y., Chen, C., Loake, G. J. & Chu, C. Nitric oxide: promoter or suppressor of programmed cell death? Prot. Cell 1, 133–142 (2010).Serrano, I., Romero-Puertas, M. C., Sandalio, L. M. & Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 66, 2869–2876 (2015).Huang, S., Hill, R. D. & Stasolla, C. Plant hemoglobin participation in cell fate determination. Plant Signal. Behavior 9, e29485 (2014).Maes, M. B., Scharpé, S. & De Meester, I. Dipeptidyl peptidase II (DPPII), a review. Clin. Chim. Acta 380, 31–49 (2007).Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).Kitamura, K. Inhibition of the Arg/N-end rule pathway-mediated proteolysis by dipeptide-mimetic molecules. Amino Acids 48, 235–243 (2016).Duek, P. D., Elmer, M. V., van Oosten, V. R. & Fankhauser C. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol. 14, 2296–2301 (2004)

    Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress

    Full text link
    [EN] The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stressesThis work was supported by MICINN (Spain) grants BIO2011-27526 and CONSOLIDER CSD2007-00057 to JL and postdoctoral contracts to MCC and AC. RM was funded by a pre-doctoral fellowship of the FPU Program from MEC (Spain). We thank Michael Holdsworth (University of Nottingham, UK) for critical reading of this manuscript and for his helpful comments and corrections. We would also like to express our appreciation for all the contributions reported in this research area, and particularly to those researchers who have not been cited in this review because of the limitations of manuscript length.Leon Ramos, J.; Castillo López Del Toro, MC.; Coego González, A.; Lozano Juste, J.; Mir Moreno, R. (2014). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany. 65(4):907-921. https://doi.org/10.1093/jxb/ert454S907921654ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.xAsai, S., & Yoshioka, H. (2009). Nitric Oxide as a Partner of Reactive Oxygen Species Participates in Disease Resistance to Necrotrophic Pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22(6), 619-629. doi:10.1094/mpmi-22-6-0619Asselbergh, B., De Vleesschauwer, D., & Höfte, M. (2008). Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions, 21(6), 709-719. doi:10.1094/mpmi-21-6-0709Batak, I., Dević, M., Gibal, Z., Grubišić, D., Poff, K. L., & Konjević, R. (2002). The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Science Research, 12(4), 253-259. doi:10.1079/ssr2002118Beligni, M. V., & Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 210(2), 215-221. doi:10.1007/pl00008128Bellin, D., Asai, S., Delledonne, M., & Yoshioka, H. (2013). Nitric Oxide as a Mediator for Defense Responses. Molecular Plant-Microbe Interactions, 26(3), 271-277. doi:10.1094/mpmi-09-12-0214-crBethke, P. C., Libourel, I. G. L., Aoyama, N., Chung, Y.-Y., Still, D. W., & Jones, R. L. (2007). The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy. Plant Physiology, 143(3), 1173-1188. doi:10.1104/pp.106.093435Bethke, P. C., Libourel, I. G. L., & Jones, R. L. (2005). Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany, 57(3), 517-526. doi:10.1093/jxb/erj060Bethke, P. C., Libourel, I. G. L., Reinöhl, V., & Jones, R. L. (2005). Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta, 223(4), 805-812. doi:10.1007/s00425-005-0116-9Bright, J., Desikan, R., Hancock, J. T., Weir, I. S., & Neill, S. J. (2005). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2 O2 synthesis. The Plant Journal, 45(1), 113-122. doi:10.1111/j.1365-313x.2005.02615.xBuchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., … Leaver, C. J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42(4), 567-585. doi:10.1111/j.1365-313x.2005.02399.xCao, F. Y., Yoshioka, K., & Desveaux, D. (2011). The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 124(4), 489-499. doi:10.1007/s10265-011-0409-yCerana, M., Bonza, M. C., Harris, R., Sanders, D., & Michelis, M. I. (2006). Abscisic Acid Stimulates the Expression of Two Isoforms of Plasma Membrane Ca2+-ATPase in Arabidopsis thaliana Seedlings. Plant Biology, 8(5), 572-578. doi:10.1055/s-2006-924111Choi, D. S., & Hwang, B. K. (2011). Proteomics and Functional Analyses of Pepper Abscisic Acid–Responsive 1 (ABR1), Which Is Involved in Cell Death and Defense Signaling. The Plant Cell, 23(2), 823-842. doi:10.1105/tpc.110.082081Chun, H. J., Park, H. C., Koo, S. C., Lee, J. H., Park, C. Y., Choi, M. S., … Kim, M. C. (2012). Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Molecules and Cells, 34(5), 463-471. doi:10.1007/s10059-012-0213-0Corpas, F. J., Barroso, J. B., Carreras, A., Quirós, M., León, A. M., Romero-Puertas, M. C., … del Río, L. A. (2004). Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. Plant Physiology, 136(1), 2722-2733. doi:10.1104/pp.104.042812Corpas, F. J., Barroso, J. B., Carreras, A., Valderrama, R., Palma, J. M., León, A. M., … del Río, L. A. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 224(2), 246-254. doi:10.1007/s00425-005-0205-9Corpas, F. J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J. M., & Barroso, J. B. (2011). Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Science, 181(5), 604-611. doi:10.1016/j.plantsci.2011.04.005Daszkowska-Golec, A., & Szarejko, I. (2013). Open or Close the Gate – Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00138Davies, W. J., & Zhang, J. (1991). Root Signals and the Regulation of Growth and Development of Plants in Drying Soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 55-76. doi:10.1146/annurev.pp.42.060191.000415De Michele, R., Formentin, E., Todesco, M., Toppo, S., Carimi, F., Zottini, M., … Lo Schiavo, F. (2008). Transcriptome analysis ofMedicago truncatulaleaf senescence: similarities and differences in metabolic and transcriptional regulations as compared withArabidopsis, nodule senescence and nitric oxide signalling. New Phytologist, 181(3), 563-575. doi:10.1111/j.1469-8137.2008.02684.xDe Torres Zabala, M., Bennett, M. H., Truman, W. H., & Grant, M. R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. The Plant Journal, 59(3), 375-386. doi:10.1111/j.1365-313x.2009.03875.xDe Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., … Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26(5), 1434-1443. doi:10.1038/sj.emboj.7601575Delledonne, M., Xia, Y., Dixon, R. A., & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394(6693), 585-588. doi:10.1038/29087Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, 98(23), 13454-13459. doi:10.1073/pnas.231178298Desikan, R., Griffiths, R., Hancock, J., & Neill, S. (2002). A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(25), 16314-16318. doi:10.1073/pnas.252461999Dubovskaya, L. V., Bakakina, Y. S., Kolesneva, E. V., Sodel, D. L., McAinsh, M. R., Hetherington, A. M., & Volotovski, I. D. (2011). cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytologist, 191(1), 57-69. doi:10.1111/j.1469-8137.2011.03661.xDurbak, A., Yao, H., & McSteen, P. (2012). Hormone signaling in plant development. Current Opinion in Plant Biology, 15(1), 92-96. doi:10.1016/j.pbi.2011.12.004EVEN-CHEN, Z., & ITAI, C. (1975). The Role of Abscisic Acid in Senescence of Detached Tobacco Leaves. Physiologia Plantarum, 34(2), 97-100. doi:10.1111/j.1399-3054.1975.tb03799.xFan, J., Hill, L., Crooks, C., Doerner, P., & Lamb, C. (2009). Abscisic Acid Has a Key Role in Modulating Diverse Plant-Pathogen Interactions. Plant Physiology, 150(4), 1750-1761. doi:10.1104/pp.109.137943Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. doi:10.1111/j.1469-8137.2006.01787.xFinkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387-415. doi:10.1146/annurev.arplant.59.032607.092740Fischer, A. M. (2012). The Complex Regulation of Senescence. Critical Reviews in Plant Sciences, 31(2), 124-147. doi:10.1080/07352689.2011.616065Freschi, L. (2013). Nitric oxide and phytohormone interactions: current status and perspectives. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00398Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., & Blatt, M. R. (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences, 100(19), 11116-11121. doi:10.1073/pnas.1434381100Garcı́a-Mata, C., & Lamattina, L. (2001). Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiology, 126(3), 1196-1204. doi:10.1104/pp.126.3.1196Garcı́a-Mata, C., & Lamattina, L. (2002). Nitric Oxide and Abscisic Acid Cross Talk in Guard Cells. Plant Physiology, 128(3), 790-792. doi:10.1104/pp.011020Garcia-Mata, C., & Lamattina, L. (2007). Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 17(3-4), 143-151. doi:10.1016/j.niox.2007.08.001Gaupels, F., Kuruthukulangarakoola, G. T., & Durner, J. (2011). Upstream and downstream signals of nitric oxide in pathogen defence. Current Opinion in Plant Biology, 14(6), 707-714. doi:10.1016/j.pbi.2011.07.005Gepstein, S., & Thimann, K. V. (1980). Changes in the abscisic acid content of oat leaves during senescence. Proceedings of the National Academy of Sciences, 77(4), 2050-2053. doi:10.1073/pnas.77.4.2050Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205-227. doi:10.1146/annurev.phyto.43.040204.135923GRAEBER, K., NAKABAYASHI, K., MIATTON, E., LEUBNER-METZGER, G., & SOPPE, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769-1786. doi:10.1111/j.1365-3040.2012.02542.xGuo, F.-Q., & Crawford, N. M. (2005). Arabidopsis Nitric Oxide Synthase1 Is Targeted to Mitochondria and Protects against Oxidative Damage and Dark-Induced Senescence. The Plant Cell, 17(12), 3436-3450. doi:10.1105/tpc.105.037770Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770GUO, Y., & GAN, S.-S. (2011). Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant, Cell & Environment, 35(3), 644-655. doi:10.1111/j.1365-3040.2011.02442.xGupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007Han, S., Tang, R., Anderson, L. K., Woerner, T. E., & Pei, Z.-M. (2003). A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature, 425(6954), 196-200. doi:10.1038/nature01932Hancock, J. T., Neill, S. J., & Wilson, I. D. (2011). Nitric oxide and ABA in the control of plant function. Plant Science, 181(5), 555-559. doi:10.1016/j.plantsci.2011.03.017Haruta, M., & Sussman, M. R. (2012). The Effect of a Genetically Reduced Plasma Membrane Protonmotive Force on Vegetative Growth of Arabidopsis. Plant Physiology, 158(3), 1158-1171. doi:10.1104/pp.111.189167Hasanuzzaman, M., & Fujita, M. (2013). Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22(3), 584-596. doi:10.1007/s10646-013-1050-4Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463He, J.-M., Ma, X.-G., Zhang, Y., Sun, T.-F., Xu, F.-F., Chen, Y.-P., … Yue, M. (2013). Role and Interrelationship of Gα Protein, Hydrogen Peroxide, and Nitric Oxide in Ultraviolet B-Induced Stomatal Closure in Arabidopsis Leaves. Plant Physiology, 161(3), 1570-1583. doi:10.1104/pp.112.211623Holdsworth, M. J., Bentsink, L., & Soppe, W. J. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 179(1), 33-54. doi:10.1111/j.1469-8137.2008.02437.xHung, K. T., & Kao, C. H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology, 160(8), 871-879. doi:10.1078/0176-1617-01118Hung, K. T., & Kao, C. H. (2004). Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. Journal of Plant Physiology, 161(1), 43-52. doi:10.1078/0176-1617-01178Janicka-Russak, M., & Kłobus, G. (2007). Modification of plasma membrane and vacuolar H+-ATPases in response to NaCL and ABA. Journal of Plant Physiology, 164(3), 295-302. doi:10.1016/j.jplph.2006.01.014Joudoi, T., Shichiri, Y., Kamizono, N., Akaike, T., Sawa, T., Yoshitake, J., … Iwai, S. (2013). Nitrated Cyclic GMP Modulates Guard Cell Signaling in Arabidopsis. The Plant Cell, 25(2), 558-571. doi:10.1105/tpc.112.105049Khanna-Chopra, R. (2011). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249(3), 469-481. doi:10.1007/s00709-011-0308-zKim, T.-H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., … Schroeder, J. I. (2011). Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 21(11), 990-997. doi:10.1016/j.cub.2011.04.045Kwon, E., Feechan, A., Yun, B.-W., Hwang, B.-H., Pallas, J. A., Kang, J.-G., & Loake, G. J. (2012). AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta, 236(3), 887-900. doi:10.1007/s00425-012-1697-8L’Haridon, F., Besson-Bard, A., Binda, M., Serrano, M., Abou-Mansour, E., Balet, F., … Métraux, J.-P. (2011). A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity. PLoS Pathogens, 7(7), e1002148. doi:10.1371/journal.ppat.1002148Lamattina, L., García-Mata, C., Graziano, M., & Pagnussat, G. (2003). NITRICOXIDE: The Versatility of an Extensive Signal Molecule. Annual Review of Plant Biology, 54(1), 109-136. doi:10.1146/annurev.arplant.54.031902.134752Lazalt, A. M., Beligni, M. V., & Lamattina*, L. (1997). European Journal of Plant Pathology, 103(7), 643-651. doi:10.1023/a:1008604410875Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D., & Hetherington, A. M. (1998). Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proceedings of the National Academy of Sciences, 95(26), 15837-15842. doi:10.1073/pnas.95.26.15837Leshem, Y. Y., Wills, R. B. H., & Ku, V. V.-V. (1998). Evidence for the function of the free radical gas — nitric oxide (NO•) — as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry, 36(11), 825-833. doi:10.1016/s0981-9428(99)80020-5Li, J.-H., Liu, Y.-Q., Lü, P., Lin, H.-F., Bai, Y., Wang, X.-C., & Chen, Y.-L. (2009). A Signaling Pathway Linking Nitric Oxide Production to Heterotrimeric G Protein and Hydrogen Peroxide Regulates Extracellular Calmodulin Induction of Stomatal Closure in Arabidopsis. Plant Physiology, 150(1), 114-124. doi:10.1104/pp.109.137067Li, Z., Peng, J., Wen, X., & Guo, H. (2012). Gene Network Analysis and Functional Studies of Senescence-associated Genes Reveal Novel Regulators of Arabidopsis Leaf SenescenceF. Journal of Integrative Plant Biology, 54(8), 526-539. doi:10.1111/j.1744-7909.2012.01136.xLibourel, I. G. L., Bethke, P. C., De Michele, R., & Jones, R. L. (2005). Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta, 223(4), 813-820. doi:10.1007/s00425-005-0117-8Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf Senescence. Annual Review of Plant Biology, 58(1), 115-136. doi:10.1146/annurev.arplant.57.032905.105316Lindermayr, C., Saalbach, G., & Durner, J. (2005). Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. Plant Physiology, 137(3), 921-930. doi:10.1104/pp.104.058719Liu, F., & Guo, F.-Q. (2013). Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis. PLoS ONE, 8(2), e56345. doi:10.1371/journal.pone.0056345Liu, H., Lau, E., Lam, M. P. Y., Chu, H., Li, S., Huang, G., … Tao, Y. (2010). OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function. New Phytologist, 187(1), 83-105. doi:10.1111/j.1469-8137.2010.03264.xLiu, H.-Y., Yu, X., Cui, D.-Y., Sun, M.-H., Sun, W.-N., Tang, Z.-C., … Su, W.-A. (2007). The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Research, 17(7), 638-649. doi:10.1038/cr.2007.34Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W., & Zhang, J. (2009). Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist, 183(4), 1030-1042. doi:10.1111/j.1469-8137.2009.02899.xLiu, Y., Ye, N., Liu, R., Chen, M., & Zhang, J. (2010). H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany, 61(11), 2979-2990. doi:10.1093/jxb/erq125Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023Lozano-Juste, J., & León, J. (2010). Nitric oxide modulates sensitivity to ABA. Plant Signaling & Behavior, 5(3), 314-316. doi:10.4161/psb.5.3.11235Lu, S., Su, W., Li, H., & Guo, Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47(2), 132-138. doi:10.1016/j.plaphy.2008.10.006Ma, W. (2011). Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Science, 181(4), 342-346. doi:10.1016/j.plantsci.2011.06.002A.‐H.‐Mackerness, S., Surplus, S. L., Blake, P., John, C. F., Buchanan‐Wollaston, V., Jordan, B. R., & Thomas, B. (1999). Ultraviolet‐B‐induced stress and changes in gene expression in Arabidopsis thaliana  : role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell & Environment, 22(11), 1413-1423. doi:10.1046/j.1365-3040.1999.00499.xMacRobbie, E. A. C. (2000). ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proceedings of the National Academy of Sciences, 97(22), 12361-12368. doi:10.1073/pnas.220417197Mandal, M. K., Chandra-Shekara, A. C., Jeong, R.-D., Yu, K., Zhu, S., Chanda, B., … Kachroo, P. (2012). Oleic Acid–Dependent Modulation of NITRIC OXIDE ASSOCIATED1 Protein Levels Regulates Nitric Oxide–Mediated Defense Signaling in Arabidopsis. The Plant Cell, 24(4), 1654-1674. doi:10.1105/tpc.112.096768Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.-P., … Truong, H.-N. (2008). The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy. Plant Physiology, 149(2), 949-960. doi:10.1104/pp.108.126938Mei
    corecore