368 research outputs found

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    Patterns of Tobacco-Use Behavior Among Chinese Smokers with Medical Conditions

    Get PDF
    Understanding the characteristics of Chinese American smokers with medical conditions and factors associated with their tobacco-use behaviors will guide effective cessation programs. In 2008, the authors described socio-demographic profiles of Chinese smokers with medical conditions treated during the period 2002–2006, documented their tobacco-use behaviors (i.e., average daily cigarette use, nicotine dependence, and number of past-year quit attempts), and drew comparisons between subjects recruited from hospitals (IP) and ambulatory settings (OP). Compared to OP, IP were significantly older, less educated, less acculturated, and more likely to be retired. Of the two groups, IP had poorer disease profiles, smoked less (4.4 vs. 11.9 cigarettes per day), and had lower nicotine-addiction scores (5.5 vs. 6.7). There was no difference between groups in past-year quit attempts. After adjustments, the data revealed that being employed and OP was associated with higher average daily cigarette use; IP were less nicotine dependent than OP; and for both groups, years of smoking was negatively associated with past-year quit attempts. Our study suggests that, more than acculturation level, health status influences the Chinese smoker’s level of cigarette use and nicotine addiction. Given the severity of their disease profiles, IP should be aggressively targeted for intervention, as they are more likely to be light smokers and to be less nicotine dependent than OP. Future tobacco treatment studies should pay attention to health status among smokers in health-care settings in order to provide a more accurate assessment of treatment needs and of barriers to successful smoking cessation

    Team climate, intention to leave and turnover among hospital employees: Prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In hospitals, the costs of employee turnover are substantial and intentions to leave among staff may manifest as lowered performance. We examined whether team climate, as indicated by clear and shared goals, participation, task orientation and support for innovation, predicts intention to leave the job and actual turnover among hospital employees.</p> <p>Methods</p> <p>Prospective study with baseline and follow-up surveys (2–4 years apart). The participants were 6,441 (785 men, 5,656 women) hospital employees under the age of 55 at the time of follow-up survey. Logistic regression with generalized estimating equations was used as an analysis method to include both individual and work unit level predictors in the models.</p> <p>Results</p> <p>Among stayers with no intention to leave at baseline, lower self-reported team climate predicted higher likelihood of having intentions to leave at follow-up (odds ratio per 1 standard deviation decrease in team climate was 1.6, 95% confidence interval 1.4–1.8). Lower co-worker assessed team climate at follow-up was also association with such intentions (odds ratio 1.8, 95% confidence interval 1.4–2.4). Among all participants, the likelihood of actually quitting the job was higher for those with poor self-reported team climate at baseline. This association disappeared after adjustment for intention to leave at baseline suggesting that such intentions may explain the greater turnover rate among employees with low team climate.</p> <p>Conclusion</p> <p>Improving team climate may reduce intentions to leave and turnover among hospital employees.</p

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Genomics of Signaling Crosstalk of Estrogen Receptor α in Breast Cancer Cells

    Get PDF
    BACKGROUND: The estrogen receptor alpha (ERalpha) is a ligand-regulated transcription factor. However, a wide variety of other extracellular signals can activate ERalpha in the absence of estrogen. The impact of these alternate modes of activation on gene expression profiles has not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: We show that estrogen, growth factors and cAMP elicit surprisingly distinct ERalpha-dependent transcriptional responses in human MCF7 breast cancer cells. In response to growth factors and cAMP, ERalpha primarily activates and represses genes, respectively. The combined treatments with the anti-estrogen tamoxifen and cAMP or growth factors regulate yet other sets of genes. In many cases, tamoxifen is perverted to an agonist, potentially mimicking what is happening in certain tamoxifen-resistant breast tumors and emphasizing the importance of the cellular signaling environment. Using a computational analysis, we predicted that a Hox protein might be involved in mediating such combinatorial effects, and then confirmed it experimentally. Although both tamoxifen and cAMP block the proliferation of MCF7 cells, their combined application stimulates it, and this can be blocked with a dominant-negative Hox mutant. CONCLUSIONS/SIGNIFICANCE: The activating signal dictates both target gene selection and regulation by ERalpha, and this has consequences on global gene expression patterns that may be relevant to understanding the progression of ERalpha-dependent carcinomas

    Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    Get PDF
    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44–53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25–44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14–32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2–7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade
    corecore