269 research outputs found

    Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells

    Get PDF
    et al.Snail1 is a transcriptional factor that plays an important role in epithelial–mesenchymal transition and in the acquisition of invasive properties by epithelial cells. In colon tumors, Snail1 expression in the stroma correlates with lower specific survival of cancer patients. However, the role(s) of Snail1 expression in stroma and its association with patients' survival have not been determined. We used human primary carcinoma-associated fibroblasts (CAFs) or normal fibroblasts (NFs) and fibroblast cell lines to analyze the effects of Snail1 expression on the protumorigenic capabilities in colon cancer cells. Snail1 expression was higher in CAFs than in NFs and, as well as α-SMA, a classic marker of activated CAFs. Moreover, in tumor samples from 50 colon cancer patients, SNAI1 expression was associated with expression of other CAF markers, such as α-SMA and fibroblast activation protein. Interestingly, coculture of CAFs with colon cells induced a significant increase in epithelial cell migration and proliferation, which was associated with endogenous SNAI1 expression levels. Ectopic manipulation of Snail1 in fibroblasts demonstrated that Snail1 expression controlled migration as well as proliferation of cocultured colon cancer cells in a paracrine manner. Furthermore, expression of Snail1 in fibroblasts was required for the coadjuvant effect of these cells on colon cancer cell growth and invasion when coxenografted in nude mice. Finally, cytokine profile changes, particularly MCP-3 expression, in fibroblasts are put forward as mediators of Snail1-derived effects on colon tumor cell migration. In summary, these studies demonstrate that Snail1 is necessary for the protumorigenic effects of fibroblasts on colon cancer cells.This research was supported by the PI12/02037, FundaciĂłn CientĂ­fica AECC, SAF2010-20750, S2010/BMD-2344, RTICC-RD12/0036/0041 and by the FundaciĂłn Banco Santander. Antonio GarcĂ­a de Herreros’ laboratory was supported by RTICC-RD12/0036/0005 and SAF 2010-16089. Ma JesĂșs Larriba’s laboratory was supported by RD12/0036/0021. Cristina Peña and JosĂ© Miguel GarcĂ­a are recipients of Miguel Servet Contracts from the Instituto de Salud Carlos III.Peer reviewe

    SOX2 regulates acinar cell development in the salivary gland

    Get PDF
    Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ

    Transcriptional Profile Associated with Clinical Outcomes in Metastatic Hormone-Sensitive Prostate Cancer Treated with Androgen Deprivation and Docetaxel

    Full text link
    (1) Background: Androgen deprivation therapy (ADT) and docetaxel (DX) combination is a standard therapy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. (2) Methods: We investigate if tumor transcriptomic analysis predicts mHSPC evolution in a multicenter retrospective biomarker study. A customized panel of 184 genes was tested in mRNA from tumor samples by the nCounter platform in 125 mHSPC patients treated with ADT+DX. Gene expression was correlated with castration-resistant prostate cancer-free survival (CRPC-FS) and overall survival (OS). (3) Results: High expression of androgen receptor (AR) signature was independently associated with longer CRPC-FS (hazard ratio (HR) 0.6, 95% confidence interval (CI) 0.3-0.9; p = 0.015), high expression of estrogen receptor (ESR) signature with longer CRPC-FS (HR 0.6, 95% CI 0.4-0.9; p = 0.019) and OS (HR 0.5, 95% CI 0.2-0.9, p = 0.024), and lower expression of tumor suppressor genes (TSG) (RB1, PTEN and TP53) with shorter OS (HR 2, 95% CI 1-3.8; p = 0.044). ARV7 expression was independently associated with shorter CRPC-FS (HR 1.5, 95% CI 1.1-2.1, p = 0.008) and OS (HR 1.8, 95% CI 1.2-2.6, p = 0.004), high ESR2 was associated with longer OS (HR 0.5, 95% CI 0.2-1, p = 0.048) and low expression of RB1 was independently associated with shorter OS (HR 1.9, 95% CI 1.1-3.2, p = 0.014). (4) Conclusions: AR, ESR, and TSG expression signatures, as well as ARV7, RB1, and ESR2 expression, have a prognostic value in mHSPC patients treated with ADT+DX

    Designed Single-Step Synthesis, Structure, and Derivative Textural Properties of Well-Ordered Layered Penta-coordinate Silicon Alcoholate Complexes

    Get PDF
    The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+[BOND]O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal–organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.United States. Defense Advanced Research Projects Agency (control No. 0471-1627)National Institute for Biomedical Imaging and Bioengineering (U.S.) (award No. EB-001960)National Institutes of Health (U.S.) (NIBIB award No. EB-002026)National Science Foundation (U.S.) (Grant No. CHE-0946721

    New Mutations in Chronic Lymphocytic Leukemia Identified by Target Enrichment and Deep Sequencing

    Get PDF
    Chronic lymphocytic leukemia (CLL) is a heterogeneous disease without a well-defined genetic alteration responsible for the onset of the disease. Several lines of evidence coincide in identifying stimulatory and growth signals delivered by B-cell receptor (BCR), and co-receptors together with NFkB pathway, as being the driving force in B-cell survival in CLL. However, the molecular mechanism responsible for this activation has not been identified. Based on the hypothesis that BCR activation may depend on somatic mutations of the BCR and related pathways we have performed a complete mutational screening of 301 selected genes associated with BCR signaling and related pathways using massive parallel sequencing technology in 10 CLL cases. Four mutated genes in coding regions (KRAS, SMARCA2, NFKBIE and PRKD3) have been confirmed by capillary sequencing. In conclusion, this study identifies new genes mutated in CLL, all of them in cases with progressive disease, and demonstrates that next-generation sequencing technologies applied to selected genes or pathways of interest are powerful tools for identifying novel mutational changes

    A Blessing and a Curse? Political Institutions in the Growth and Decay of Generalized Trust: A Cross-National Panel Analysis, 1980–2009

    Get PDF
    Despite decades of research on social capital, studies that explore the relationship between political institutions and generalized trust–a key element of social capital–across time are sparse. To address this issue, we use various cross-national public-opinion data sets including the World Values Survey and employ pooled time-series OLS regression and fixed- and random-effects estimation techniques on an unbalanced panel of 74 countries and 248 observations spread over a 29-year time period. With these data and methods, we investigate the impact of five political-institutional factors–legal property rights, market regulations, labor market regulations, universality of socioeconomic provisions, and power-sharing capacity–on generalized trust. We find that generalized trust increases monotonically with the quality of property rights institutions, that labor market regulations increase generalized trust, and that power-sharing capacity of the state decreases generalized trust. While generalized trust increases as the government regulation of credit, business, and economic markets decreases and as the universality of socioeconomic provisions increases, both effects appear to be more sensitive to the countries included and the modeling techniques employed than the other political-institutional factors. In short, we find that political institutions simultaneously promote and undermine generalized trust

    Serine phosphorylation regulates paxillin turnover during cell migration

    Get PDF
    BACKGROUND: Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. RESULTS: We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. CONCLUSION: Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility

    Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning

    Get PDF
    Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices
    • 

    corecore