17 research outputs found

    Pharmacogenomics and cancer stem cells: a changing landscape?

    Get PDF
    Pharmacogenomics in oncology holds the promise to personalize cancer therapy. However, its clinical application is still limited to a few genes, and, in the large majority of cancers, the correlation between genotype and clinical outcome has been disappointing. One possible explanation is that current pharmacogenomic studies do not take into account the emerging role of cancer stem cells (CSCs) in drug sensitivity and resistance. CSCs are a subpopulation of cells driven by specific signal-transduction pathways, but genetic variants affecting their activity are generally neglected in current pharmacogenomic studies. Moreover, in several malignancies, CSCs represent a rare sub-population; therefore, whole tumor profiling might mask CSC gene expression patterns. This article reviews current evidence on CSC chemoresistance and shows how common genetic variations in CSC-related genes may predict individual response to anti-cancer agents. Furthermore, we provide insights into the design of pharmacogenomic studies to address the clinical usefulness of CSC genetic profiling

    Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I).</p> <p>Methods</p> <p>Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and <it>in vitro </it>radioresistance assay were carried out under standard conditions.</p> <p>Results</p> <p>CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 10<sup>3 </sup>dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 10<sup>5 </sup>monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR).</p> <p>Conclusions</p> <p>We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, SiHa, Ca Ski and C-4 I) and found that they express characteristic markers of stem cell, EMT and radioresistance. The fact that CICs demonstrated a higher degree of resistance to radiation than differentiated cells suggests that specific detection and targeting of CICs could be highly valuable for the therapy of tumors from the uterine cervix.</p

    Silencing of Kruppel-like factor 2 by the histone methyltransferase EZH2 in human cancer

    Get PDF
    The Kruppel-like factor (KLF) proteins are multitasked transcriptional regulators with an expanding tumor suppressor function. KLF2 is one of the prominent members of the family because of its diminished expression in malignancies and its growth-inhibitory, pro-apoptotic and anti-angiogenic roles. In this study, we show that epigenetic silencing of KLF2 occurs in cancer cells through direct transcriptional repression mediated by the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2). Binding of EZH2 to the 5′-end of KLF2 is also associated with a gain of trimethylated lysine 27 histone H3 and a depletion of phosphorylated serine 2 of RNA polymerase. Upon depletion of EZH2 by RNA interference, short hairpin RNA or use of the small molecule 3-Deazaneplanocin A, the expression of KLF2 was restored. The transfection of KLF2 in cells with EZH2-associated silencing showed a significant anti-tumoral effect, both in culture and in xenografted nude mice. In this last setting, KLF2 transfection was also associated with decreased dissemination and lower mortality rate. In EZH2-depleted cells, which characteristically have lower tumorigenicity, the induction of KLF2 depletion ‘rescued' partially the oncogenic phenotype, suggesting that KLF2 repression has an important role in EZH2 oncogenesis. Most importantly, the translation of the described results to human primary samples demonstrated that patients with prostate or breast tumors with low levels of KLF2 and high expression of EZH2 had a shorter overall survival

    DNA repair: the culprit for tumor-initiating cell survival?

    Get PDF
    The existence of “tumor-initiating cells” (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population

    Pathobiological Implications of the Expression of EGFR, pAkt, NF-κB and MIC-1 in Prostate Cancer Stem Cells and Their Progenies

    Get PDF
    The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt, nuclear factor-kappaB (NF-κB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and immunofluorescence data have revealed that the expression levels of EGFR, Ser473-pAkt, NF-κB p65 and MIC-1 proteins were significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease progression and these biomarkers were expressed in a small subpopulation of CD133+ PC cells and the bulk tumor mass of CD133− PC cells. Importantly, all of these biomarkers were also overexpressed in 80–100% of 30 PC metastasis bone tissue specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of therapeutic interest, the targeting of EGFR, pAkt, NF-κB or MIC-1 was also effective at suppressing the basal and EGF-promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-κB and/or MIC-1 may represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and lethal disease states

    Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model Eukaryote species

    Get PDF
    Microsatellites are ubiquitous in Eukaryotic genomes. A more complete understanding of their origin and spread can be gained from a comparison of their distribution within a phylogenetic context. Although information for model species is accumulating rapidly, it is insufficient due to a lack of species depth, thus intragroup variation is necessarily ignored. As such, apparent differences between groups may be overinflated and generalizations cannot be inferred until an analysis of the variation that exists within groups has been conducted. In this study, we examined microsatellite coverage and motif patterns from 454 shotgun sequences of 154 Eukaryote species from eight distantly related phyla (Cnidaria, Arthropoda, Onychophora, Bryozoa, Mollusca, Echinodermata, Chordata and Streptophyta) to test if a consistent phylogenetic pattern emerges from the microsatellite composition of these species. It is clear from our results that data from model species provide incomplete information regarding the existing microsatellite variability within the Eukaryotes. A very strong heterogeneity of microsatellite composition was found within most phyla, classes and even orders. Autocorrelation analyses indicated that while microsatellite contents of species within clades more recent than 200 Mya tend to be similar, the autocorrelation breaks down and becomes negative or non-significant with increasing divergence time. Therefore, the age of the taxon seems to be a primary factor in degrading the phylogenetic pattern present among related groups. The most recent classes or orders of Chordates still retain the pattern of their common ancestor. However, within older groups, such as classes of Arthropods, the phylogenetic pattern has been scrambled by the long independent evolution of the lineages.Emese Meglécz, Gabriel Nève, Ed Biffin and Michael G. Gardne
    corecore