118 research outputs found

    Not all international collaboration is beneficial: The Mendeley readership and citation impact of biochemical research collaboration

    Get PDF
    This is an accepted manuscript of an article published by Wiley Blackwell in Journal of the Association for Information Science and Technology on 13/05/2015, available online: https://doi.org/10.1002/asi.23515 The accepted version of the publication may differ from the final published version.Biochemistry is a highly funded research area that is typified by large research teams and is important for many areas of the life sciences. This article investigates the citation impact and Mendeley readership impact of biochemistry research from 2011 in the Web of Science according to the type of collaboration involved. Negative binomial regression models are used that incorporate, for the first time, the inclusion of specific countries within a team. The results show that, holding other factors constant, larger teams robustly associate with higher impact research, but including additional departments has no effect and adding extra institutions tends to reduce the impact of research. Although international collaboration is apparently not advantageous in general, collaboration with the USA, and perhaps also with some other countries, seems to increase impact. In contrast, collaborations with some other nations associate with lower impact, although both findings could be due to factors such as differing national proportions of excellent researchers. As a methodological implication, simpler statistical models would have found international collaboration to be generally beneficial and so it is important to take into account specific countries when examining collaboration

    How Structure Determines Correlations in Neuronal Networks

    Get PDF
    Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks

    Locomotion modulates specific functional cell types in the mouse visual thalamus

    Get PDF
    The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-electrode recordings in dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning. Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on variability and correlations are relatively minor. With regards to tunings, locomotion enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient cells and neurons with nonlinear responses to high spatial frequencies. Channel specific modulations may serve to highlight particular visual inputs during active behaviors

    Willpower and Conscious Percept: Volitional Switching in Binocular Rivalry

    Get PDF
    When dissimilar images are presented to the left and right eyes, awareness switches spontaneously between the two images, such that one of the images is suppressed from awareness while the other is perceptually dominant. For over 170 years, it has been accepted that even though the periods of dominance are subject to attentional processes, we have no inherent control over perceptual switching. Here, we revisit this issue in response to evidence that top-down attention can target perceptually suppressed ‘vision for action’ representations in the dorsal stream. We investigated volitional control over rivalry between apparent motion (AM), drifting (DM) and stationary (ST) grating pairs. Observers demonstrated a remarkable ability to generate intentional switches in the AM and D conditions, but not in the ST condition. Corresponding switches in the pursuit direction of optokinetic nystagmus verified this finding objectively. We showed it is unlikely that intentional perceptual switches were triggered by saccadic eye movements, because their frequency was reduced substantially in the volitional condition and did not change around the time of perceptual switches. Hence, we propose that synergy between dorsal and ventral stream representations provides the missing link in establishing volitional control over rivalrous conscious percepts

    Interleukin 15 Levels in Serum May Predict a Severe Disease Course in Patients with Early Arthritis

    Get PDF
    Background: Interleukin-15 (IL-15) is thought to be involved in the physiopathological mechanisms of RA and it can be detected in the serum and the synovial fluid of inflamed joints in patients with RA but not in patients with osteoarthritis or other inflammatory joint diseases. Therefore, the objective of this work is to analyse whether serum IL-15 (sIL-15) levels serve as a biomarker of disease severity in patients with early arthritis (EA). Methodology and Results: Data from 190 patients in an EA register were analysed (77.2% female; median age 53 years; 6-month median disease duration at entry). Clinical and treatment information was recorded systematically, especially the prescription of disease modifying anti-rheumatic drugs. Two multivariate longitudinal analyses were performed with different dependent variables: 1) DAS28 and 2) a variable reflecting intensive treatment. Both included sIL-15 as predictive variable and other variables associated with disease severity, including rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (ACPA). Of the 171 patients (638 visits analysed) completing the follow-up, 71% suffered rheumatoid arthritis and 29% were considered as undifferentiated arthritis. Elevated sIL-15 was detected in 29% of this population and this biomarker did not overlap extensively with RF or ACPA. High sIL-15 levels (β Coefficient [95% confidence interval]: 0.12 [0.06-0.18]; p&0.001) or ACPA (0.34 [0.01-0.67]; p = 0.044) were significantly and independently associated with a higher DAS28 during follow-up, after adjusting for confounding variables such as gender, age and treatment. In addition, those patients with elevated sIL-15 had a significantly higher risk of receiving intensive treatment (RR 1.78, 95% confidence interval 1.18-2.7; p = 0.007). Conclusions: Patients with EA displaying high baseline sIL-15 suffered a more severe disease and received more intensive treatment. Thus, sIL-15 may be a biomarker for patients that are candidates for early and more intensive treatmentThe work of Belen Díaz-Sánchez was supported by the RETICS Programme (Programa de Redes Temáticas de Investigación Colaborativa [Colaborative Research Thematic Network Programme]; RD08/0075 - RIER [Red de Inflamación y Enfermedades Reumáticas; Inflammation and Rheumatic Diseases Network]) from the Instituto de Salud Carlos III, Spain (URL: www.isciii.es) within the VI National Plan for I+D+I 2008–2011 (FEDER). The work of Isidoro González-Álvaro was in part supported by a grant for the Intensification of the Research Tasks in the National Health Care System from Instituto de Salud Carlos III, Spain. The consumables for measurements and data analysis were supported by a Fondo de Investigación Sanitaria grant (08/0754) from the Instituto de Salud Carlos II

    Dynamic Effective Connectivity of Inter-Areal Brain Circuits

    Get PDF
    Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question “Which areas cause the present activity of which others?”. Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early proposals, we advance here that dynamic interactions between brain rhythms provide as well the basis for the self-organized control of this “communication-through-coherence”, making thus possible a fast “on-demand” reconfiguration of global information routing modalities

    Levelt’s laws do not predict perception when luminance- and contrast-modulated stimuli compete during binocular rivalry

    Get PDF
    Incompatible patterns viewed by each of the two eyes can provoke binocular rivalry, a competition of perception. Levelt’s first law predicts that a highly visible stimulus will predominate over a less visible stimulus during binocular rivalry. In a behavioural study, we made a counterintuitive observation: low visibility patterns can predominate over high visibility patterns. Our results show that none of Levelt’s binocular rivalry laws hold when luminance-modulated (LM) patterns compete with contrast-modulated (CM) patterns. We discuss visual saliency, asymmetric feedback, and a combination of both as potential mechanisms to explain the CM versus LM findings. Competing orthogonal LM stimuli do follow Levelt’s laws, whereas only the first two laws hold for competing CM stimuli. The current results provide strong psychophysical evidence for the existence of separate processing stages for LM and CM stimuli

    La implantación del catéter Swan-Ganz por vía antecubital. ¿Está demostrada la eficacia en enfermería?

    No full text
    La vía de preferencia para la implantación del catéter de Swan-Ganz en nuestra unidad es la vía basílica, por no ser un procedimiento habitual nos planteamos el objetivo de analizar la eficacia de dicha vía para la implantación de un catéter de termodilución. Material y método: La muestra fueron 106 pacientes ingresados en la Unidad coronaria del Hospital de la Santa Creu i San Pau desde mayo de 1995 a 1996 y portadores de un catéter de Swan-Ganz por la vía antecubital. Las variables del estudio fueron: complicaciones (Flebitis, hematoma, sangrado, hipertermia, edema, rotura del transductor y arritmias cardiacas), alteraciones en el registro (curva amortiguada, enclavada o caída en ventrículo). Resultados: Destacar un 54'7% de complicaciones (sangrado 44'7%, hematomas 23'3%, flebitis 13'6%). Del total de alteraciones del registro (49 %) un 22'6 % precisaron la retirada del catéter de termodilución. Conclusiones: La vía antecubital es una vía de abordaje sencilla que proporciona mejor fijación y visualización del catéter y confort del paciente, pero existe un elevado porcentaje de complicaciones no graves
    corecore